

DECLARATION OF PERFORMANCE

No. 0078 – EN

1. Unique identification code of the product-type: fischer concrete screw ULTRACUT FBS II

2. Intended use/es:

Product	Intended use/es
Metal anchors for use in concrete (heavy-	For fixing and/or supporting concrete structural elements or heavy units such as
duty type)	cladding and suspended ceilings, see appendix, especially Annexes B 1 to B 4

3. Manufacturer: fischerwerke GmbH & Co. KG, Klaus-Fischer-Straße 1, 72178 Waldachtal, Germany

4. Authorised representative: --

5. System/s of AVCP: 1

6a. Harmonised standard: ---

Notified body/ies: ---

6b. European Assessment Document: ETAG 001; 2013-04

EAD 330011-00-0601; 2014-07

European Technical Assessment: ETA-15/0352; 2016-04-12

Technical Assessment Body: DIBt

Notified body/ies: 1343 - MPA Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values for resistance for static and quasi-static loads	See appendix, especially Annex C 1
Characteristic resistance for seismic performance categories C1 and C2	See appendix, especially Annex C 2
Displacements for tension and shear loads	See appendix, especially Annex C 4

Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A 1
Resistance to fire	See appendix, especially Annex C 3

8. Appropriate Technical Documentation and/or Specific Technical Documentation: ---

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Andreas Bucher, Dipl.-Ing.

Wolfgang Hengesbach, Dipl.-Ing., Dipl.-Wirtsch.-Ing.

1.V. A. Dun i.V. W. Mylal

Tumlingen, 2016-04-19

- This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail.

- The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Specific Part

1 Technical description of the product

The fischer concrete screw ULTRACUT FBS II is an anchor made of hardened carbon steel of sizes 8, 10, 12 and 14. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values for resistance for static and quasi-static loads	See Annex C 1
Characteristic resistance for seismic performance categories C1 and C2	See Annex C 2
Displacements for tension and shear loads	See Annex C 4

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	See Annex C 3

3.3 Safety in use (BWR 4)

For Basic Works Requirement Safety in use the same criteria are valid as for Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, and European Assessment Document EAD 330011-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Specifications of intended use

Anchorages subject to:

- · Static and quasi-static loads: All sizes and all embedment depths
- Seismic action for Seismic Performance Category C1 and C2: Only for maximum hnom.
- · Fire exposure: all sizes and all embedment depths according to Annex C3.

Base materials:

- Reinforced and unreinforced normal weight concrete according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013
- · Non-cracked or cracked concrete: All sizes and all embedment depths

Use conditions (Environmental conditions):

· Structures subject to dry internal conditions.

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The
 position of the screw is indicated on the design drawings (e.g. position of the screw relative to reinforcement or
 to supports, etc.).
- Anchorages under static or quasi-static actions are to be designed in accordance with:
 - ETAG 001, Annex C, design method A, Edition August 2010 or
 - CEN/TS 1992-4:2009, design method A
- Anchorages under seismic actions are to be designed in accordance with:
 - EOTA Technical Report TR 045, Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer under seismic action are not allowed.
- Anchorages under fire exposure are to be designed in accordance with:
- EOTA Technical Report TR 020, Edition May 2004 or
 - CEN/TS 1992-4:2009, Annex D
 - It must be ensured that local spalling of the concrete cover does not occur.

Installation:

- Hammer drilling or diamond drilling or hollow drilling according to Annex B4: All sizes and all embedment depths.
- Screw installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: New hole must be drilled at a minimum distance of twice the depth of the aborted hole or closer, if the hole is filled with a high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- · Adjustability according to Annex B3 for: All sizes and all embedment depths.
- Cleaning of drill hole is not necessary when using a hollow drill or:
 - If drilling vertically upwards
 - If drilling vertical downwards and the drill hole depth has been increased. We recommend to increase the drill depth with additional 3 d₀.
- After correct installation further turning of the screw head should not be possible
- The head of the screw must be fully engaged on the fixture and show no signs of damage.
- For Seismic Performance Category C2 applications: The gap between screw shaft and fixture must be filled with mortar; compressive strength ≥ 50 N/mm² (for example FIS V, FIS EM, FIS HB or FIS SB).

fischer concrete screw ULTRACUT FBS II

Intended Use Specifications

Table B1: Installation	paran	neters	5																				
screw size					-			FBS II			_												
Screw Size			8	3		10					14												
Nominal embedment depth	h _{nom}	[mm]	50 65 55 65 85						75	100	65	85	115										
Nominal drill hole diameter	d ₀	[mm]	8 10						12			14											
Cutting diameter of drill bits	d _{cut} ≤	[mm]	8,45 10,45						12,50			14,50											
Cutting diameter tolerance especially for diamond drillers	d _{cut}	[mm]	mm] 8,05 - 8,45 10,05 - 10,45 12,10 - 12,50				8,05 - 8,45								05 - 8,45 10,05 - 10,45 12,10 - 12,50 14,10				5 10,05 - 10,45 12,10 - 12,50 14			10 - 14	,50
Clearance hole diameter	df	[mm]	10,6 -	10,6 - 12,0 12,8 - 14,0 14,8 - 16,0 16,9 -						3,0													
Wrench size (US,S)	SW	[mm]	13 15 17						21														
Tx size	Тх	-	40 50 -						-														
Countersunk head diameter	dh	[mm]	1	18 21 -						-													
Countersunk diameter in fixture	d _c	[mm]	2	20 23					-		-												
Drill hole depth ¹⁾	h₁≥	[mm]	60	75	65	75	95	70	85	110	80	100	130										
Drill hole depth ¹⁾ (with adjustable setting process)	h₁≥	[mm]	70	70 85 75 85				80	95	120	90	110	140										
Thickness of fixture	$t_{fix}^{(3)} \ge$	[mm]	0																				
	t _{fix} ≤	[mm]	L - h _{nom}																				
Length of equality	$L_{min}^{3)} =$	[mm]	50	65	55	65	85	60	75	100	65	85	115										
Length of screw	L _{max} =	[mm]	400	415	405	415	435	410	425	450	415	435	465										
Torque impact screw driver 2)	T _{imp,max}	[Nm]	60	00					650														

Cleaning of drill hole is not necessary when using a hollow drill or:

- if drilling vertical upwards

- If drilling vertical downwards and the drill hole depth has been increased. We recommend to increase the drill depth with additional 3 d₀.

²⁾ Installation with any torque impact screw driver up to the maximum mentioned torque moment (T_{imp,max}). Alternatively, all other tools without a mentioned torque moment are allowed (e.g. ratchet spanner). In any case it must be secured, that after installation the head of the screw must be tight down on the fixture. An easy further turning of the screw must not be possible and the head of the screw is not damaged. The torque moments T_{imp,max} are not valid for manual installation (e.g. torque wrench).

³⁾ For countersunk screws the height of the head must be added to t_{fix} and L_{min}.

Appendix 6 / 11

It is permissible to untighten the screw up to two times for adjustment purposes. Therefor the screw may be untighten to a maximum of $L_{adj} = 20$ mm off the surface of the initial fixture. The total permissible thickness of shims added during the adjustment process is $t_{adj} = 10$ mm.

Table B3:Minimum thickness of concrete members,
minimum spacing and edge distance

8 10 12 14	Screw size								FBS II					
Minimum thickness of concrete member h_{min} [mm]100120100120140110130150120140180Minimum spacing s_{min} [mm]35405060	Screw size			8		10			12				14	
concrete member n_{min} [mm] 100 120 100 120 140 110 130 150 120 140 180 Minimum spacing s_{min} [mm] 35 40 50 60	Nominal embedment depth	h _{nom}	[mm]	50	65	55	65	85	60	75	100	65	85	115
		h _{min}	[mm]	100	120	100	120	140	110	130	150	120	140	180
Minimum edge distance c _{min} [mm] 35 40 50 60	Vinimum spacing									50			60	
	Minimum edge distance	3	5		40			50			60			

fischer concrete screw ULTRACUT FBS II

Adjustment Minimum thickness of concrete members, minimum spacing and edge distance

Appendix 7 / 11

Screw size									FBS II								
			()	50			10	0.5		12	100	05	14				
	edment depth	h _{nom}	[mm]	50	65	55	65	85	60	75	100	65	85	115			
Steel failure	for tension loa				35 55 76												
		N _{Rk,S}	[kN]	3	5		55			76			103	3			
		γm,s,n	[kN]														
Characteristi	c resistance	V _{Rk,S}	[kN]	13,1										61,7			
		γm,s,v	[-]						1,5								
		k ₂ ²⁾	[-]						1,0								
		М ⁰ _{Rk,s}	[Nm]	5	1		95			165			269				
Pullout failu	re																
Charact. resistance in	Cracked	N _{Rk,P}	[kN]	6	12	9	12	_1)	_1)	_1)	_1)	_1)	_1)	_ ¹⁾			
concrete C20/25	Non-cracked	$N_{Rk,P}$	[kN]		_1)												
	C25/30				1,10												
	C30/37								1,22								
Increasing	C35/45	Ψc							1,34								
factor concrete	C40/50		[-]						1,41								
	C45/55								1,48								
	C50/60							1,55									
Installation sa	afety factor	[-]						1,0									
Concrete co	ne failure and s	plitting fail	ure; Co	oncrete	e pryou	ut failu	re										
Effective emb	pedment depth	h _{ef}	[mm]	40	52	43	51	68	47	60	81	50	67	93			
Factor for	Cracked	k _{cr} ²⁾	[mm]	7,2													
Factor for	Non-cracked	k _{ucr} ²⁾	[mm]						10,1								
Concrete	Edge distance	C _{cr,N}	[mm]						1,5 h _e	F							
cone failure	Spacing	S _{cr,N}	[mm]						3 h _{ef}								
Splitting	Edge distance	[mm]	1,5 h _{ef}														
failure	Spacing	S _{cr,sp}	[mm]						3 h _{ef}								
k-factor for p	,	$k^{(3)} = k_3^{(2)}$	[-]	1,0	2,0	1,0				2	2,0						
Installation sa		$\gamma_2^{(3)} = \gamma_{inst}^{(2)}$	[-]						1,0								
Concrete ed	-																
	gth in concrete	$I_f = h_{nom}$ d_{nom}	[mm]	50	65	55	65	85	60	75	100	65	85	115			
Nominal dian	[mm]		В		10			12			14						
Adjustment																	
max. thickne: adjustment la		[mm]	10														
Max. number	of adjustments	n _a	[-]						2								

³⁾ Parameters relevant only for design according to ETAG 001 Annex C

fischer concrete screw ULTRACUT FBS II

Performances

Performance for static and quasi-static action

Screw size					FB	SII	
Screw size				12	14		
Nominal embed	ment depth	h _{nom}	[mm]	65	85	100	115
Steel failure fo	r tension loa	d and shea	r load C	:1			
Oh ave at a viatio v		N _{Rk,S,C1}	[kN]	35	55	76	103
Characteristic re	esistance	V _{Rk,S,C1}	[kN]	11,4	22,3	26,9	38,3
Pullout failure							
Characteristic re cracked concret		N _{Rk,p,C1}	[kN]	12		_1)	
Concrete cone	failure						
Effective embed	lment depth	h _{ef}	[mm]	52	68	81	93
Concrete cone	Edge distance	C _{cr,n}	[mm]		1,5	h _{ef}	
failure	Spacing	S _{cr,n}	[mm]		3	h _{ef}	
Installation safe	ty factor	γ2	[-]		1	,0	
Concrete pryo	ut failure						
k-factor		k	[-]		2	,0	
Concrete edge	failure						
Effective length	in concrete	$I_f = h_{nom}$	[mm]	65	85	100	115
Nominal diamet	er of screw	d _{nom}	[mm]	8	10	12	14

Table C3: Characteristic values for Seismic Performance Category C2

Gap between screw shaft and fixture must be filled with mortar

Screw size						SII	
				8	10	12	14
Nominal embedm	ent depth	h _{nom}	[mm]	65	85	100	115
Steel failure for t	ension loa	d and shea	r load C	2			
Chava stavistis vasi	ataraa	N _{Rk,S,C2}	[kN]	35,0	55	76,0	103
Characteristic resi	stance	$V_{Rk,S,C2}$	[kN]	13,3	20,4	29,9	35,2
Pullout failure							
Characteristic resi cracked concrete	stance in	$N_{Rk,p,C2}$	[kN]	2,1	6,0	8,9	17,1
Concrete cone fa	ilure						
Effective embedm	ent depth	h _{ef}	[mm]	52	68	81	93
Concrete cone d	dge istance	C _{cr,n}	[mm]		1,5	5 h _{ef}	
failure S	pacing	S _{cr,n}	[mm]		3	h _{ef}	
Installation safety	factor	γ2	[-]		1	,0	
Concrete pryout	failure						
k-factor		k	[-]		2	,0	
Concrete edge fa	ilure						
Effective length in	concrete	$I_{\rm f} = h_{\rm nom}$	[mm]	65	85	100	115
Nominal diameter	of screw	d _{nom}	[mm]	8	10	12	14
1) Dullout fo	ilure not dec	risive			_	-	

Performances

Characteristic values for Seismic Performance Category C1 and C2

Annex C 2

Screw size						3	1	10		FBS II	12			14	
Minimum embe	dment depth	1	h _{nom}	[mm]	50	65	55	65	85	60	75	100	65	85	115
Steel failure fo					,fi = N _f	Rk,s,fi =	V _{Rk,s,f}	i)							
		R30	F _{Rk,s,fi}	[kN]		33		3,45			4,62			6,46	
		R60	F _{Rk,s,fi}	[kN]	1,82			2,73			3,66		5,11		
	US, S	R90	F _{Rk,s,fi}	[kN]	1,30		2,00			2,69			3,75		
		R120	F _{Rk,s,fi}	[kN]	1,	04	1,64				2,20			3,08	
		R30	F _{Rk,s,fi}	[kN]	2,	12	2,96			-			-		
Characteristic	SK,	R60	F _{Rk,s,fi}	[kN]	1,	67	2,26			-			-		
resistance for head shape	US TX, S TX	R90	F _{Rk,s,fi}	[kN]	1,	21	1,56				-			-	
•		R120	F _{Rk,s,fi}	[kN]	0,99		1,21				-			-	
		R30	M ⁰ _{Rk,s,fi}	[Nm]	2,	62	4,92			7,83				12,89)
	All head	R60	M ⁰ Rk,s,fi	[Nm]	2,	05		3,89		6,20			10,19		
	shapes	R90	M ⁰ _{Rk,s,fi}	[Nm]	1,	46		2,85			4,56			7,48	
		R120	M ⁰ _{Rk,s,fi}	[Nm]	1,	17		2,34			3,73			6,14	
Pullout failure	-														
		R30	N _{Rk,s,fi}	[kN]											
Characteristic re	eistanco	R60	N _{Rk,s,fi}	[kN]	1,5	3,0	2,3	3,0	5,0	2,9	4,2	6,6	3,2	4,9	8,1
Characteristic re	5313121100	R90	N _{Rk,s,fi}	[kN]											
		R120	N _{Rk,s,fi}	[kN]	1,2	2,4	1,8	2,4	4,0	2,3	3,3	5,2	2,5	3,9	6,5
Concrete cone	failure							-						-	-
		R30	N _{Rk,s,fi}	[kN]											
Characteristic re	esistance	R60	N _{Rk,s,fi}	[kN]	1,7	3,5	2,2	3,3	6,9	2,7	5,0	10,6	3,2	6,6	15,0
	olotanoo	R90	N _{Rk,s,fi}	[kN]											
		R120	N _{Rk,s,fi}	[kN]	1,4	2,8	1,7	2,7	5,5	2,2	4,0	8,5	2,5	5,3	12,0
Edge distance															
R30 to R120 In case of fire at	the state for an an		C _{cr,fi}	[mm]			-l'ata			2 h _{ef}					
Spacing	цаск тот т	lore than	one side,	the mi	nimun	i eage	dista	nce sr	all be	2 300	mm				
R30 to R120			S _{cr,fi}	[mm]						2 c _{cr,fi}					
Concrete pryor	ut failure		-01,11	[[]											
R30 to R120			k	[-]	1,0	2,0	1,0				2	,0			
The anchorage	denth has to	bo inor						0	00000	arod			valua		

fischer concrete screw ULTRACUT FBS II

Seren eize								FBS II					
Screw size				8		10			12			14	
Nominal embedment depth	h _{nom}	[mm]	50	65	55	65	85	60	75	100	65	85	115
Tension load in cracked concrete	Ν	[kN]	2,9	5,7	4,3	5,7	9,6	5,5	8,0	12,5	6,1	9,4	15,3
Displacement	δ_{N0}	[mm]	0,5	0,9	0,7	0,7	0,8	0,7	0,9	0,8	0,8	1,0	0,8
Displacement	$\delta_{N\infty}$	[mm]	1,3	1,0	0,7	0,7	0,8	1,3	0,9	0,8	1,1	1,0	1,1
Tension load in non - cracked concrete	Ν	[kN]	7,9	12,0	6,8	8,8	13,5	7,7	11,0	17,4	8,5	13,2	21,6
Displacement	δ_{N0}	[mm]	0,9	1,4	0,9	0,9	1,4	0,9	1,1	1,4	1,0	1,3	1,1
Displacement	$\delta_{N_{\infty}}$	[mm]	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,1	1,3	1,1

Table C6: Displacements due to shear loads (static)

Screw size			FBS II										
			8		10		12		14				
Nominal embedment depth	h _{nom}	[mm]	50	65	55	65	85	60	75	100	65	85	115
Shear load in cracked and non-cracked concrete	v	[kN]	6,2	9,0	14,0	14,0	16,6	15,9	15,9	21,2	23,0	23,0	30,5
Displacement	δ_{V0}	[mm]	1,4	1,4	3,2	3,2	3,2	2,5	2,5	3,4	2,8	2,8	5,4
	$\delta_{V\infty}$	[mm]	2,0	2,1	4,9	4,9	4,9	3,8	3,8	5,1	4,2	4,2	8,1

Table C7: Displacements due to tension loads (Seismic Performance Category C2)

Screw size			FBS II					
			8	10	12	14		
Nominal embedment depth	h _{nom}	[mm]	65	85	100	115		
Displacement DLS	$\delta_{N,C2(DLS)}$	[mm]	0,5	0,8	0,9	1,3		
Displacement ULS	$\delta_{N,C2}$ (ULS)	[mm]	1,7	2,8	2,7	5,0		

Table C8: Displacements due to shear loads (Seismic Performance Category C2)

Screw size			FBS II					
			8	10	12	14		
Nominal embedment depth	h _{nom}	[mm]	65	85	100	115		
Displacement DLS	$\delta_{V,C2(DLS)}$	[mm]	1,6	2,7	3,1	4,1		
Displacement ULS	$\delta_{V,C2 (ULS)}$	[mm]	3,9	7,1	5,3	8,7		

fischer concrete screw ULTRACUT FBS II