TBS FRAME

TELLERBAUSCHRAUBE

GROSSER TELLERKOPF

Der große Tellerkopf garantiert eine ausgezeichnete Befestigung der Verbindung; die flache Form ermöglicht eine Verbindung ohne zusätzliche Stärken auf der Holzoberfläche, sodass die Platten ohne Hindernisse am selben Element befestigt werden können.

KURZES GEWINDE

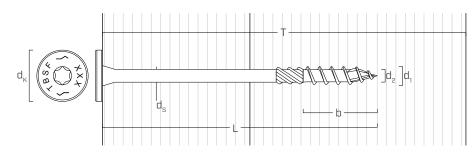
Das kurze Gewinde mit einer festen Länge von $1\,1/3$ " (34 mm) ist für die Befestigung von Mehrschichtplatten (Multi-ply) für die leichte Rahmenkonstruktion optimiert.

SCHWARZES E-COATING

Beschichtet mit schwarzem E-Coating für eine einfache Erkennung auf der Baustelle und erhöhte Korrosionsbeständigkeit.

SPITZE 3 THORNS

Die TBSF lässt sich einfach und ohne Vorbohren montieren. Mehr Schrauben können auf geringerem Raum und größere Schrauben in kleineren Elementen verwendet werden.


ANWENDUNGSGEBIETE

- Holzwerkstoffplatten
- Massiv- und Brettschichtholz
- BSP und LVL
- Harthölzer
- Mehrschicht-Fachwerkholzträger

ARTIKELNUMMERN UND ABMESSUNGEN

d_1	d_K	ARTNR.	L	b	Т	L	b	T	Stk.
[mm]	[mm]		[mm]	[mm]	[mm]	[in]	[in]	[in]	
		TBSF873	73	34	76	2 7/8''	1 5/16''	3''	50
		TBSF886	86	34	90	3 3/8''	1 5/16''	3 1/2"	50
	19	TBSF898	98	34	102	3 7/8''	1 5/16''	4''	50
8 TX 40		TBSF8111	111	34	114	4 3/8''	1 5/16''	4 1/2"	50
17.40		TBSF8130	130	34	134	5 1/8''	1 5/16''	5 1/4''	50
		TBSF8149	149	34	152	5 7/8''	1 5/16''	6''	50
		TBSF8175	175	34	178	6 7/8''	1 5/16''	7''	50

GEOMETRIE UND MECHANISCHE EIGENSCHAFTEN

Nenndurchmesser	d_1	[mm]	8
Kopfdurchmesser	d_K	[mm]	19,00
Kerndurchmesser	d_2	[mm]	5,40
Schaftdurchmesser	d_S	[mm]	5,80
Vorbohrdurchmesser ⁽¹⁾	$d_{V,S}$	[mm]	5,0
Vorbohrdurchmesser ⁽²⁾	$d_{V,H}$	[mm]	6,0
Charakteristischer Zugwiderstand	$f_{tens,k}$	[kN]	20,1
Charakteristisches Fließmoment	$M_{y,k}$	[Nm]	20,1

⁽¹⁾ Vorbohrung gültig für Nadelholz (Softwood). (2) Vorbohrung gültig für Harthölzer (Hardwood) und für LVL aus Buchenholz.

			Nadelholz (Softwood)	LVL aus Nadelholz (LVL Softwood)	LVL aus Buche, vorgebohrt (Beech LVL predrilled)
Charakteristischer Wert der Auszugsfestigkeit	f _{ax,k}	[N/mm ²]	11,7	15,0	29,0
Charakteristischer Durchziehparameter	f _{head,k}	[N/mm ²]	10,5	20,0	-
Assoziierte Dichte	ρ_{a}	[kg/m ³]	350	500	730
Rohdichte	$ ho_k$	[kg/m ³]	≤ 440	410 ÷ 550	590 ÷ 750

Für Anwendungen mit anderen Materialien siehe ETA-11/0030.

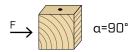
MEHRSCHICHT-FACHWERK

Das Produkt ist in optimierten Längen für die Befestigung von Fachwerkelementen mit 2, 3 und 4 Schichten der gängigsten Abmessungen von Massivholz und LVL erhältlich.

■ MINDESTABSTÄNDE DER SCHRAUBEN BEI ABSCHERBEANSPRUCHUNG | HOLZ

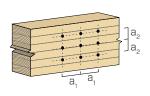
Schraubenabstände OHNE Vorbohrung

 $\rho_k \leq 420 \; kg/m^3$

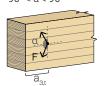

d_1	[mm]		8
a ₁	[mm]	10·d	80
a ₂	[mm]	5·d	40
a _{3,t}	[mm]	15·d	120
a _{3,c}	[mm]	10 ⋅d	80
a _{4,t}	[mm]	5·d	40
a _{4,c}	[mm]	5·d	40

d_1	[mm]		8
a ₁	[mm]	5·d	40
a ₂	[mm]	5·d	40
a _{3,t}	[mm]	10·d	80
a _{3,c}	[mm]	10·d	80
a _{4.t}	[mm]	10·d	80
a _{4,c}	[mm]	5·d	40

Schraubenabstände VORGEBOHRT



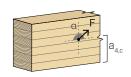
d_1	[mm]		8
a ₁	[mm]	5·d	40
a ₂	[mm]	3·d	24
a _{3,t}	[mm]	12·d	96
a _{3.c}	[mm]	7∙d	56
		3·d	24
		3·d	24


d_1	[mm]		8
a_1	[mm]	4·d	32
a ₂	[mm]	4·d	32
a _{3,t}	[mm]	7⋅d	56
a _{3,c}	[mm]	7⋅d	56
a _{4,t}	[mm]	7⋅d	56
a _{4,c}	[mm]	3·d	24

 α = Winkel zwischen Kraft- und Faserrichtung

 $d = d_1 = Nenndurchmesser Schraube$

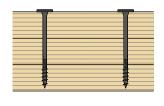
beanspruchtes Hirnholzende -90° < a < 90°


unbeanspruchtes Hirnholzende 90° < α < 270°

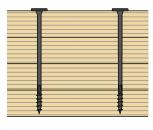
beanspruchter Rand $0^{\circ} < \alpha < 180^{\circ}$

unbeanspruchter Rand $180^{\circ} < \alpha < 360^{\circ}$

ANMERKUNGEN


- Die Mindestabstände werden gemäß der Normen EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Bei Verbindungen von Elementen aus Douglasienholz (Pseudotsuga menziesii) müssen die Mindestabstände und die minimalen, parallelen Abstände zur Faser mit dem Koeffizienten 1,5 multipliziert werden.
- Der Abstand a_1 , aufgelistet für Schrauben mit Spitze 3 THORNS, eingeschraubt ohne Vorbohrung in Holzelemente mit Dichte $\rho_k \leq 420 \text{ kg/m}^3$ und Winkel zwischen Kraft- und Faserrichtung $\alpha=0^\circ$, wurde auf der Grundlage experimenteller Untersuchungen mit 10-d angenommen; wahlweise können 12-d gemäß EN 1995:2014 übernommen werden.
- Für Mindestabstände auf LVL siehe TBS auf S. 81.

ANWENDUNGSBEISPIELE: LEICHTER RAHMEN



Schraube: TBSF873 Holzelemente: 2 x 38 mm (*1 1/2''*) Gesamtstärke: 76 mm (*3 ''*)

Schraube: TBSF8111 Holzelemente: 3 x 38 mm (1 1/2") Gesamtstärke: 114 mm (4 1/2")

Schraube: TBSF8149 Holzelemente: 4 x 38 mm (1 1/2") Gesamtstärke: 152 mm (6 ")

							SCHERWERT		ZUGKRÄFTE	
		C	Geometri	ie			Holz-Holz ε=90°	Gewindeauszug ε=90°	Gewindeauszug ε=0°	Kopfdurchzug
				A		A A A	1	A		
d ₁	L	b	Т.	T	Α	Α	R _{V,90,k}	R _{ax,90,k}	R _{ax,0,k}	R _{head,k}
[mm]	[mm]	[mm]	[mm]	[in]	[mm]		[kN]	[kN]	[kN]	[kN]
	73	34	76	3''	38	1 1/2"	2,91	3,43	1,03	4,09
	86	34	90	3 1/2"	45	1 3/4''	3,27	3,43	1,03	4,09
	98	34	102	4''	51	2"	3,51	3,43	1,03	4,09
8	111	34	114	4 1/2"	57	2 1/4"	3,54	3,43	1,03	4,09
	130	34	134	5 1/4"	67	2 5/8"	3,54	3,43	1,03	4,09
	149	34	152	6''	76	3''	3,54	3,43	1,03	4,09
	175	34	178	7''	89	3 1/2"	3,54	3,43	1,03	4,09

STATISCHE WERTE | LVL

							SCHERWERT		ZUGKRÄFTE	
		G	ieometr	ie			LVL-LVL ε=90°	Gewindeauszug ε=90°	Gewindeauszug ε=0°	Kopfdurchzug
		d ₁					→ A A		↑	
d ₁ [mm]	L [mm]	b [mm]	T [mm]	T [in]	A [mm]	A [in]	R_{V,90,k} [kN]	R _{ax,90,k} [kN]	R _{ax,0,k} [kN]	R _{head,k} [kN]
[]	73	34	76	3''	38	1 1/2"	3,54	3,95	2,63	6,99
	86	34	90	3 1/2"	45	1 3/4''	3,90	3,95	2,63	6,99
	98	34	102	4''	51	2"	3,98	3,95	2,63	6,99
8	111	34	114	4 1/2"	57	2 1/4''	3,98	3,95	2,63	6,99
	130	34	134	5 1/4''	67	2 5/8"	3,98	3,95	2,63	6,99
	149	34	152	6''	76	3''	3,98	3,95	2,63	6,99
	175	34	178	7''	89	3 1/2"	3,98	3,95	2,63	6,99

ε = Winkel zwischen Schraube und Faserrichtung

ALLGEMEINE GRUNDLAGEN

- Die charakteristischen Werte werden gemäß der Norm EN 1995:2014 und in Übereinstimmung mit ETA-11/0030 berechnet.
- Die Bemessungswerte werden aus den charakteristischen Werten wie folgt berechnet:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Die Beiwerte γ_M und $k_{\mbox{mod}}$ sind aus der entsprechenden geltenden Norm zu übernehmen, die für die Berechnung verwendet wird.

- Bei den Werten für die mechanische Festigkeit und die Geometrie der Schrauben wurde auf die Angaben in der ETA-11/0030 Bezug genommen.
- Die Bemessung und Überprüfung der Holzelemente müssen getrennt durchgeführt werden.
- Für die Positionierung der Schrauben sind die Mindestabstände zu berücksichtigen.
- Die charakteristischen Scherfestigkeitswerte wurden bei eingeschraubten Schrauben ohne Vorbohrung bewertet. Mit vorgebohrten Schrauben können höhere Festigkeitswerte erreicht werden.
- Die charakteristischen Scherfestigkeitswerte wurden unter Berücksichtigung des vollständig in das zweite Element eingedrehten Gewindeteils berechnet.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung einer Einschraubtiefe b berechnet
- Die charakteristische Kopfdurchzugsfestigkeit wurden für ein Element aus Holz oder auf Holzbasis berechnet

ANMERKUNGEN | HOLZ

- Die charakteristischen Holz-Holz-Scherfestigkeitswerte wurden unter Berücksichtigung eines Winkels ϵ von 90° ($R_{V,90,k}$) zwischen Fasern des zweiten Elements und dem Verbinder berechnet.
- Die charakteristischen Gewindeauszugswerte wurden unter Berücksichtigung eines Winkels ϵ sowohl von 90° ($R_{ax,90,k}$) als auch 0° ($R_{ax,0,k}$) zwischen den Fasern des Holzelements und dem Verbinder berechnet.
- Bei der Berechnung wurde eine Rohdichte der Holzelemente von ρ_k = 385 kg/m³ berücksichtigt. Für andere pk-Werte können die aufgelisteten Festigkeiten mithilfe des
 - k_{dens}-Beiwerts umgerechnet werden (siehe Seite 87).
- Für eine Reihe von n parallel zur Faserrichtung des Holzes in einem Abstand ${\sf a_1}$ angeordnete Schrauben kann die effektive charakteristische Tragfähigkeit Ref,V,k mittels der wirksamen Anzahl nef berechnet werden (siehe S. 80).

ANMERKUNGEN | LVL

- Bei der Berechnung wurde eine Rohdichte der LVL-Elemente aus Nadelholz (Softwood) von ρ_k = 480 kg/m³ berücksichtigt.
- Die charakteristischen Scherfestigkeitswerte werden für Verbinder berechnet, die auf der Seitenfläche (wide face) eingesetzt werden, wobei für die einzelnen Holzelemente ein Winkel von 90° zwischen dem Verbinder und der Faser, ein Winkel von 90° zwischen Verbinder und Seitenfläche des LVL-Elements und ein Winkel von 0° zwischen der Kraft- und Faserrichtung berücksichtigt wird.
- Der Gewindeauszugswert wurde mit einem Winkel von 90° zwischen Fasern und Verbinder berechnet.