

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-05/0231 vom 29. Mai 2018

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von Deutsches Institut für Bautechnik

Verbundanker V

Verbunddübel zur Verankerung im Beton

MKT

Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach

DEUTSCHLAND

MKT Herstellwerk 1

MKT Herstellwerk 3

12 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-00-0601

Z33746.18

Europäische Technische Bewertung ETA-05/0231

Seite 2 von 12 | 29. Mai 2018

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z33746.18 8.06.01-38/18

Europäische Technische Bewertung ETA-05/0231

Seite 3 von 12 | 29. Mai 2018

Besonderer Teil

1 Technische Beschreibung des Produkts

Der Verbundanker V ist ein Verbunddübel, der aus einer Glaspatrone V-P und einer Ankerstange mit Sechskantmutter besteht. Die Ankerstange (einschließlich Mutter und Unterlegscheibe) besteht aus galvanisch verzinktem Stahl, feuerverzinktem Stahl, aus nichtrostendem Stahl oder aus hochkorrosionsbeständigem Stahl.

Die Glaspatrone wird in ein Bohrloch gesetzt und die Ankerstange durch gleichzeitiges Schlagen und Drehen eingetrieben. Der Dübel wird durch Ausnutzung des Verbundes zwischen Ankerstange, Mörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung	Siehe Anhang
(statische und quasi-statische Einwirkungen)	C 1
Charakteristischer Widerstand unter Querbeanspruchung	Siehe Anhang
(statische und quasi-statische Einwirkungen)	C 2
Verschiebungen	Siehe Anhang
(statische und quasi-statische Einwirkungen)	C 1 und C 2
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Leistung nicht bewertet

3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330499-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Z33746.18 8.06.01-38/18

Europäische Technische Bewertung ETA-05/0231

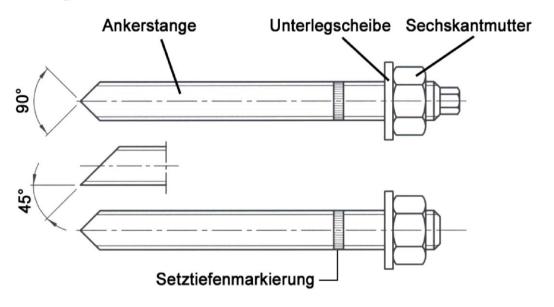
Seite 4 von 12 | 29. Mai 2018

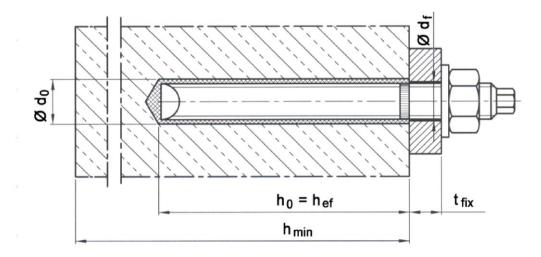
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 29. Mai 2018 vom Deutschen Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter




Glaspatrone V-P

Ankerstange V-A

Einbauzustand

Verbundanker V

Produktbeschreibung
Produkt und Einbauzustand

Anhang A1

Ankerstange V-A Gedrehte Ausführung Prägung: z.B. ♠ M12 Kaltgeformte Ausführung Werkzeichen Zusätzliche Längenkennung für Dübelgröße M12 Längenkennung M12 Gewindegröße hef M12-8 zusätzliche Kennung -8 der Festigkeitsklasse 8.8 Glaspatrone V-P zusätzliche Kennung für nichtrostenden Stahl A4 ♦ M12 HCR HCR zusätzliche Kennung für hochkorrosionsbeständigen Stahl Längenkennung Ε G Н K Dübellänge min 88,9 101,6 114,3 127,0 139,7 152,4 165,1 Dübellänge max 101,6 114,3 127,0 139,7 152,4 165,1 177,8 Längenkennung М N o Р Q R 177,8 ≥ 190,5 203,2 215,9 228,6 241,3 254,0 Dübellänge min 190,5 203,2 215,9 228,6 241,3 254,0 279,4 Dübellänge max Längenkennung S Т U ٧ W Х γ Z Dübellänge min ≥ 279,4 304,8 330,2 355,6 381,0 406,4 431,8 457,2 Dübellänge max 304,8 330,2 355,6 381,0 406,4 431,8 457,2 483.0

Tabelle A1: Abmessungen

Teil	Dübelgröße			M8	M10	M12	M16	M20	M24
		d	[mm]	8	10	12	16	20	24
1	Ankerstange	L 1) ≥	[mm]	95	100	120	140	190	235
		h _{ef}	[mm]	80	90	110	125	170	210
2	Sechskantmutter	SW	[mm]	13	17	19	24	30	36
	Clashatrana	D _P	[mm]	9	11	13	17	22	24
4	Glaspatrone	L _P	[mm]	80	80	95	95	175	210

¹⁾ andere Längen lieferbar

Abmessungen in mm

Verbundanker V

Produktbeschreibung

Prägung und Abmessungen

Anhang A2

Teil	Benennung	Werkstoff				
	teile aus verzinktem Stahl nisch verzinkt ≥ 5 µm gemäß EN	ISO 4042:1999 oder feuerverzinkt gemäß EN ISO 10684:2004+AC	:2009			
1	Ankerstange	Stahl, Festigkeitsklasse 5.8, 8.8 Bruchdehnung A ₅ > 8 %				
2	Sechskantmutter		Festigkeitsklasse 5 (für Ankerstangen der Klasse 5.8) Festigkeitsklasse 8 (für Ankerstangen der Klasse 8.8)			
3	Unterlegscheibe	Stahl, verzinkt				
Stahl	teile aus nichtrostendem Stahl	A4				
1	Ankerstange	Werkstoff 1.4401 / 1.4404 / 1.4571 / 1.4362 / 1.4578 gemäß EN 10088-3:2014 Festigkeitsklasse 70, Festigkeitsklasse 80 Bruchdehnung $A_5 > 8\%$				
2	Nichtrostender Stahl A4, Sechskantmutter Nichtrostender Stahl A4, Festigkeitsklasse 70 (für Ankerstangen der Klasse 70), Festigkeitsklasse 80 (für Ankerstangen der Klasse 80) gemäß EN ISO 3506-2:2009					
3	3 Unterlegscheibe Nichtrostender Stahl A4 gemäß EN ISO 3506-1:2009					
Stahl	teile aus hochkorrosionsbestär	ndigem Stahl HCR				
1	Ankerstange	Werkstoff 1.4529 / 1.4565 gemäß EN 10088-3:2014 Festigkeitsklasse 70, Bruchdehnung $A_5 > 8\%$				
2	Sechskantmutter	Werkstoff 1.4529 / 1.4565 gemäß EN 10088-3:2014 Festigkeitsklasse 70, gemäß EN ISO 3506-2:2009				
3	Unterlegscheibe	Werkstoff 1.4529 / 1.4565 gemäß EN 10088-3:2014				
Glasp	patrone	·				
4	Glaspatrone	Glasampulle, Quarzsand, Harz, Härter				
	1	1				
Verl	oundanker V					
			Anhang A3			

Spezifizierung des Verwendungszwecks

Verbundanker V	Ankerstange V-A						Ankerstange V-A							
verbundanker v	М8	M10	M12	M16	M20	M24								
Statische und quasi-statische Lasten	•													
	Bewehrter oder unbewehrter Normalbeton ohne Fasern, gem. EN 206:2013													
Verankerungsgrund	Festigkeitsklasse C20/25 bis C50/60, gem. EN 206:2013													
	ungerissener Beton													
Temperaturbereich I -40°C bis +40°C	max. Langzeit-Temperatur +24°C und max. Kurzzeit-Temperatur +40°C													
Temperaturbereich II -40°C bis +80°C	max. Langzeit-Temperatur +50°C und max. Kurzzeit-Temperatur +80°C													

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl)
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl)
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl)

Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden)

Bemessung:

- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.)
- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- Die Bemessung der Verankerungen erfolgt nach FprEN 1992-4:2016 in Verbindung mit TR 055

Verbundanker V	
Verwendungszweck Spezifikationen	Anhang B1

Tabelle B1: Montagekennwerte

Dübelgröße			М8	M10	M12	M16	M20	M24
Bohrernenndurchmesser	d_0	[mm]	10	12	14	18	25	28
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]	10,5	12,5	14,5	18,5	25,5	28,5
Bohrlochtiefe	h_0	[mm]	80	90	110	125	170	210
Effektive Verankerungstiefe	h _{ef}	[mm]	80	90	110	125	170	210
Durchgangsloch im anzuschließenden Bauteil	d_{f}	[mm]	9	12	14	18	22	26
Stahlbürstendurchmesser	d_{b}	[mm]	11	13	16	20	27	30
Maximales Montagedrehmoment	T_{inst}	[Nm]	10	20	40	80	120	180

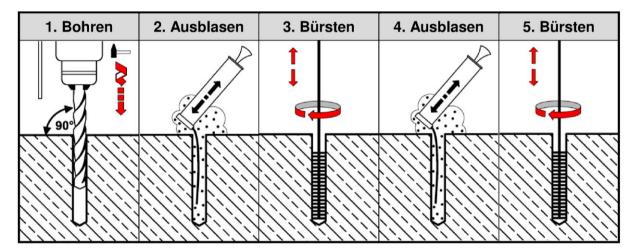
Tabelle B2: Mindestbauteildicke, Achs- und Randabstand

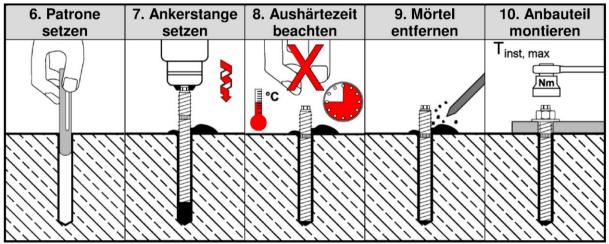
Dübelgröße			М8	M10	M12	M16	M20	M24
Mindestbauteildicke	h_{min}	[mm]	110	120	140	160	220	260
Minimaler Randabstand	C _{min}	[mm]	40	45	55	65	85	105
Minimaler Achsabstand	S _{min}	[mm]	40	45	55	65	85	105

Tabelle B3: Aushärtezeiten

Temperatur im Bohrloch	minimale Aushärtezeit					
Temperatur im Bonnoch	trockener Beton	feuchter Beton				
≥ 0°C	5 h	10 h				
≥ + 5°C	1 h	2 h				
≥ +20°C	20 min	40 min				
≥ +30°C	10 min	20 min				

Verbundanker V	
Verwendungszweck Montagekennwerte und Aushärtezeiten	Anhang B2




Einbau:

- · Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters
- Trockener oder nasser Beton: alle Größen
- · Bohrlochherstellung durch Hammerbohren
- · Bohrlochreinigung:

vollständiges Entfernen von im Bohrloch eventuell vorhandenem Wasser und Reinigung des Bohrlochs durch mindestens 1x Blasen / 1x Bürsten / 1x Bürsten; Reinigen mit dem vom Hersteller gelieferten Reinigungsgeräten; vor dem Ausbürsten Säubern der Bürste und Überprüfung, ob der Bürstendurchmesser nach Anhang B2, Tabelle B1 eingehalten ist. Beim Einführen der Stahlbürste in das Bohrloch muss ein deutlicher Widerstand spürbar sein. Andernfalls ist eine neue Stahlbürste oder eine mit größerem Durchmesser zu verwenden

- Belastung erst nach Ablauf der Aushärtezeit nach Tabelle B3.
- Verfallsdatum beachten

Verbundanker V	
Verwendungszweck Montagekennwerte und Montageanleitung	Anhang B3

Tabelle C1: Cha	rakteristische Wer	te bei Zugbean:	spruchung
-----------------	--------------------	-----------------	-----------

Jan									
Dübelgröße					M10	M12	M16	M20	M24
Stahl	versagen								
ische gkeit	Stahl verzinkt, Festigkeitsklasse 5.8	$N_{Rk,s}$	[kN]	18	29	42	78	123	177
	Stahl verzinkt, Festigkeitsklasse 8.8	N _{Rk,s}	[kN]	29	46	67	126	196	282
Charakteristische Zugtragfähigkeit	nichtrostender Stahl A4 Festigkeitsklasse 70	$N_{Rk,s}$	[kN]	26	40	59	110	172	247
Chara	nichtrostender Stahl A4 Festigkeitsklasse 80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282
	hochkorrosionsbeständiger Stahl HCR	N _{Rk,s}	[kN]	26	40	59	110	172	247
Komb	iniertes Versagen durch Herausziel	nen und	Betonau	sbruch					
Chara	kterisitische Verbundtragfähigkeit im u	ngeriss	enen Beto	n C20/25	bis C50	/60			
Tempe	Temperaturbereich I τ _{Rk}			10	11	9,5	9,5	8,5	7,5
Tempe	eraturbereich II	τ_{Rk}	[N/mm ²]	10	11	9,5	8,0	7,0	5,5
Beton	ausbruch								
Faktor	für k ₁	k _{ucr,N}	[-]		_	11	,0		
Randa	bstand	C _{cr,N}	[mm]	1,5 h _{ef}					
Achsa	bstand	[mm]	3 h _{ef}						
Spalten									
Charal	Charakteristische Tragfähigkeit $N^0_{Rk,sp}$			min [N ⁰ _{Rk,p} ; N ⁰ _{Rk,c}]					
Randabstand C _{cr,sp}		[mm]	1,5 h _{ef} 1 h _{ef}						
Achsabstand $s_{cr,sp}$			[mm]	3 h _{ef} 2 h _{ef}					
Monta	gebeiwert	γinst	[-]			1,	2		

Tabelle C2: Verschiebung unter Zugbeanspruchung

Dübelgröße			M8	M10	M12	M16	M20	M24
Zuglast	N	[kN]	8	12	16	20	30	38
Verschiebung	δ_{N0}	[mm]	0,1	0,2	0,2	0,2	0,5	0,4
Versementing	$\delta_{N\infty}$	[mm]						

Verbundanker V	
Leistungen Charakteristische Werte und Verschiebung bei Zugbeanspruchung	Anhang C1

T 11 00	01 11 11 1	144	• •
Tabelle C3:	Charakteristische	Werte bei 0	Querbeanspruchung

Dübelgröße					M10	M12	M16	M20	M24
Stahlv	versagen ohne Hebelarm								
ische igkeit	Stahl, verzinkt Festigkeitsklasse 5.8	$V^0_{Rk,s}$	[kN]	9	14	21	39	61	88
	Stahl, verzinkt Festigkeitsklasse 8.8	$V^0_{\rm Rk,s}$	[kN]	15	23	33	63	98	141
Charakteristische Quertragfähigkeit	nichtrostender Stahl A4 Festigkeitsklasse 70	$V^0_{\rm Rk,s}$	[kN]	13	20	29	55	86	124
Chara Quert	nichtrostender Stahl A4 Festigkeitsklasse 80	$V^0_{ m Rk,s}$	[kN]	15	23	33	62	98	141
	hochkorrosionsbeständiger Stahl HCR	$V^0_{ m Rk,s}$	[kN]	13	20	29	55	86	124
Duktili	Duktilitätsfaktor k ₇ [-]			0,8					
Stahlv	versagen mit Hebelarm								
	Stahl, verzinkt Festigkeitsklasse 5.8	$M^0_{Rk,s}$	[Nm]	19	37	65	166	325	561
sches ıent	Stahl, verzinkt Festigkeitsklasse 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	898
narakteristische Biegemoment	nichtrostender Stahl A4 Festigkeitsklasse 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	233	454	785
Charakteristisches Biegemoment	nichtrostender Stahl A4 Festigkeitsklasse 80	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	898
	hochkorrosionsbeständiger Stahl HCR	M ⁰ _{Rk,s}	[Nm]	26	52	92	233	454	785
Beton	ausbruch auf der lastabgewandt	en Seite							
Faktor k ₈ [-]		2,0							
Beton	kantenbruch								
Effektive Dübellänge		[mm]	80	90	110	125	170	210	
Wirksa	amer Außendurchmesser	d_{nom}	[mm]	10	12	14	18	25	28
Monta	gebeiwert	γinst	[-]			1	,0		

Tabelle C4: Verschiebung unter Querbeanspruchung

Dübelgröße			M8	M10	M12	M16	M20	M24
Querlast	٧	[kN]	5	8	12	22	35	50
Varachiahung	δ_{V0}	[mm]	2	3	3	4	5	5
Verschiebung	$\delta_{V\infty}$	[mm]	4	5	5	6	7	7

Verbundanker V	
Leistungen Charakteristische Werte und Verschiebung bei Querbeanspruchung	Anhang C2