

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-17/0716 vom 11. Mai 2021

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Injektionssystem VMH für Beton

Verbunddübel zur Verankerung in Beton

MKT
Metall-Kunststoff-Technik GmbH & Co. KG
Auf dem Immel 2
67685 Weilerbach
DEUTSCHLAND

Werk 1, D Werk 2, D

33 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-01-0601, Edition 04/2020

ETA-17/0716 vom 22. November 2019

Z44144.21

Europäische Technische Bewertung ETA-17/0716

Seite 2 von 33 | 11. Mai 2021

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z44144.21 8.06.01-76/21

Europäische Technische Bewertung ETA-17/0716

Seite 3 von 33 | 11. Mai 2021

Besonderer Teil

1 Technische Beschreibung des Produkts

Das "Injektionssystem VMH für Beton" ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel VMH und einem Stahlteil gemäß Anhang A3 und A5 besteht.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 und/oder 100 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung			
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang B 3, C 1, C 3, C4, C 5, C 8, C 9, C 11, C 12			
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 2, C 6, C 10, C 13			
Verschiebungen unter Kurzzeit- und Langzeitbelastung	Siehe Anhang C 15 bis C 17			
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Siehe Anhang C 7, C 14, C 15			

3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

Z44144.21 8.06.01-76/21

Europäische Technische Bewertung ETA-17/0716

Seite 4 von 33 | 11. Mai 2021

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

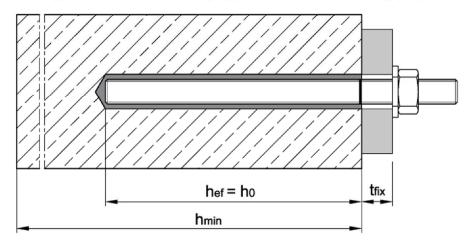
Gemäß dem Europäischen Bewertungsdokument EAD 330499-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

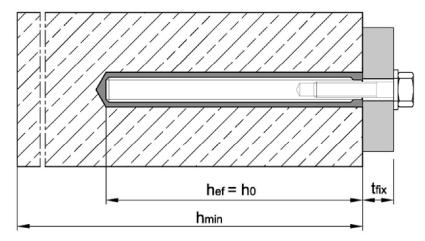
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

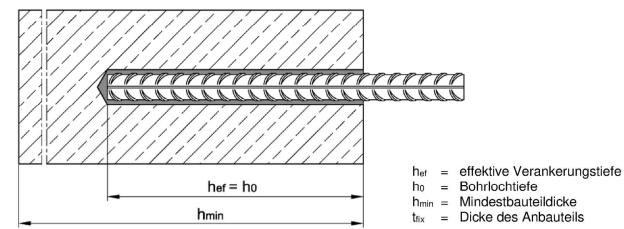
Ausgestellt in Berlin am 11. Mai 2021 vom Deutschen Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Baderschneider

Z44144.21 8.06.01-76/21



Einbauzustand Ankerstange M8 bis M30


Vorsteckmontage oder Durchsteckmontage (optional mit verfülltem Ringspalt)

Einbauzustand Innengewindeankerstange VMU-IG M6 bis VMU-IG M20

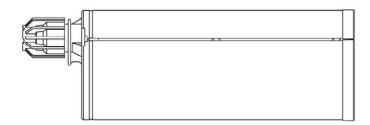
Einbauzustand Betonstahl Ø8 bis Ø32

Injektionssystem VMH für Beton

Produktbeschreibung

Einbauzustand

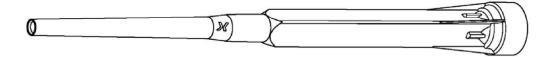
Anhang A1



Kartusche: Injektionsmörtel VMH

Koaxial Kartusche 150 ml, 280 ml, 300 ml bis 330 ml, 380 ml bis 420 ml

Side-by-side Kartusche 235 ml, 345 ml bis 360 ml, 825 ml



Kartuschenaufdruck:

VMH

Verarbeitungshinweise, Chargennummer, Haltbarkeit, Gefahrennummer, Lagertemperatur, Aushärtezeit und Verarbeitungszeit (abhängig von der Temperatur), optional mit Kolbenwegskala

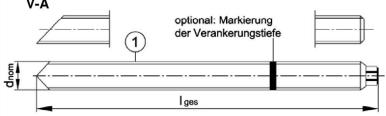
Statikmischer

Injektionsadapter mit Mischerverlängerung

Injektionssystem VMH für Beton

Produktbeschreibung

Kartuschen, Statikmischer und Injektionsadapter


Anhang A2

Ankerstange VMU-A, V-A mit Unterlegscheibe und Sechskantmutter M8, M10, M12, M16, M20, M24, M27, M30 (verzinkt, A4, HCR)

Prägung z.B.:

M10

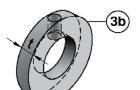
Werkzeichen
M10 Gewindegröße

zusätzliche Kennung:

A4 nichtrostender Stahl

HC hochkorrosionsbeständiger Stahl

Ankerstange VM-A (Meterware zum Ablängen)

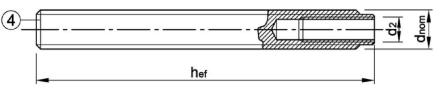

M8, M10, M12, M16, M20, M24, M27, M30 (verzinkt, A2, A4, HCR)

Handelsübliche Gewindestange

M8, M10, M12, M16, M20, M24, M27, M30 (verzinkt, A2, A4, HCR) mit:

- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle A1
- Abnahmeprüfzeugnis 3.1 gemäß EN 10204:2004

Verfüllscheibe und Mischerreduzierung zum Verfüllen des Ringspalts zwischen Anker und Anbauteil



Dicke der Verfüllscheibe für Durchmesser < M24: t = 5 mm ≥ M24: t = 6 mm

<u>Innengewindeankerstange</u>

VMU-IG M6, VMU-IG M8, VMU-IG M10, VMU-IG M12, VMU-IG M16, VMU-IG M20 (verzinkt, A4, HCR)

Prägung z.B.: < > M8

Werkzeichen
Innengewinde

M8 Gewindegröße (Innengewinde)

zusätzliche Kennung:

A4 nichtrostender Stahl

HCR hochkorrosionsbeständiger Stahl

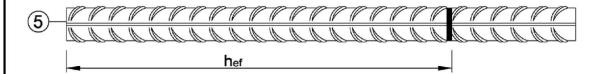
Injektionssystem VMH für Beton

Produktbeschreibung

Ankerstange und Innengewindeankerstange

Anhang A3

744708 21 8 06 01-76/21



Teil	Benennung		Werkstoff							
galva feuer	verzinkt ≥ 4	5 µm gemäß E 10 µm gemäß (i 15 µm gemäß E	im Mittel 50	µm) EN	NISO 1461:	2009, E	N ISO 10684	l:20	04+AC:2009 ode	
		Festigkeits- klasse	Charakteri Zugfesti	stische	Charakter Streckg		Bruch- dehnung	FN	N ISO 683-4:2018	
		4.6		400		240	A ₅ > 8 %	7	N 10263:2001;	
1	Ankerstange	4.8] [400]	320	A ₅ > 8 %	handelsübliche Gewindestangen:	ndelsübliche	
		5.6	f _{uk} [N/mm²]	500	f _{yk} [N/mm²]	300	A ₅ > 8 %		ewindestangen:	
		5.8		500	[400	A ₅ > 8 %] EN	NISO 898-1:2013	
		8.8		800		640	A ₅ ≥ 12% ¹⁾			
		4	für Ankers	tangen	der Klasse	4.6, 4.8				
2	Sechskantmutter	5	für Ankers	tangen	der Klasse	4.6, 4.8,	5.6, 5.8	E١	NISO 898-2:2012	
		8	für Ankerst	angen d	ler Klasse 4	1.6, 4.8,	5.6, 5.8, 8.8			
3a	Unterlegscheibe		EN ISO 88	7:2006	9:2000, EN	ISO 709	3:2000, EN I	so	7094:2000,	
3b	Verfüllscheibe		Stahl, verz	inkt						
	Innengewinde-	5.8	Stahl, galvanisch verzinkt oder A ₅ > 8%						EN ISO 683-4:2018	
	ankerstange trostender Stahl A2 ²	8.8	diffusionsv CRC	erzinkt	301 / 1.430	7 / 1.431	A ₅ > 8% 1 / 1.4567 / ²			
Nicht Nicht	ankerstange	8.8	diffusionsv CRC CRC	erzinkt II (1.43 III (1.44		7 / 1.431 4 / 1.457	A ₅ > 8% 1 / 1.4567 / ²			
Nicht Nicht	ankerstange trostender Stahl A2 ² trostender Stahl A4	8.8	diffusionsv CRC CRC CRC	rerzinkt II (1.43 III (1.44 V (1.44 stische	301 / 1.430 401 / 1.440	7 / 1.431 4 / 1.457 5) istische	A ₅ > 8% 1 / 1.4567 / ²	1.45	541)	
Nicht Nicht	ankerstange trostender Stahl A2 ² trostender Stahl A4	8.8 ger Stahl HCR Festigkeits-	CRC CRC CRC CRC CRC Charakteri Zugfesti	rerzinkt II (1.43 III (1.44 V (1.44 stische	301 / 1.430 401 / 1.440 529 / 1.456 Charakter Streckg	7 / 1.431 4 / 1.457 5) istische	A ₅ > 8% 1 / 1.4567 / 7 1 / 1.4578) Bruch-	1.45 EN	541) N 10088-1:2014	
Nicht Nicht Hoch	ankerstange trostender Stahl A2 ² trostender Stahl A4 nkorrosionsbeständi	8.8 ger Stahl HCR Festigkeits- klasse	CRC CRC CRC CRC CRC Charakteri Zugfesti	II (1.43 III (1.44 V (1.45 stische gkeit	301 / 1.430 401 / 1.440 529 / 1.456 Charakter Streckg	7 / 1.431 4 / 1.457 5) istische renze	A ₅ > 8% 1 / 1.4567 / 7 1 / 1.4578) Bruch- dehnung	1.45 EN	541) N 10088-1:2014	
Nicht Nicht Hoch	ankerstange trostender Stahl A2 ² trostender Stahl A4 nkorrosionsbeständi	8.8 ger Stahl HCR Festigkeits- klasse 50	CRC CRC CRC CRC CRC Charakteri Zugfesti	II (1.4: III (1.4: V (1.4: stische gkeit	301 / 1.430 401 / 1.440 529 / 1.456 Charakter Streckg	7 / 1.431 4 / 1.457 5) istische renze 210	A ₅ > 8% 1 / 1.4567 / 7 1 / 1.4578) Bruchdehnung A ₅ > 8%	1.45 EN	541) N 10088-1:2014	
Nicht Nicht Hoch	ankerstange trostender Stahl A2 ² trostender Stahl A4 nkorrosionsbeständi	8.8 ger Stahl HCR Festigkeits- klasse 50 70	CRC CRC CRC CRC Charakteri Zugfesti	V (1.45 stische gkeit 500 700 800	301 / 1.430 401 / 1.440 529 / 1.456 Charakter Streckg	7 / 1.431 4 / 1.457 5) istische renze 210 450 600	$A_5 > 8\%$ 1 / 1.4567 / 1 / 1.4578) Bruch-dehnung $A_5 > 8\%$ $A_5 \ge 12\%^{1)}$	1.45 EN	541) N 10088-1:2014 N ISO 3506-1:202	
Nicht Nicht Hoch	ankerstange trostender Stahl A2 ² trostender Stahl A4 nkorrosionsbeständi	ger Stahl HCR Festigkeits- klasse 50 70 80	CRC CRC CRC CRC Charakteri Zugfesti	II (1.43 III (1.44 V (1.45 stische gkeit 500 700 800 tangen	301 / 1.430 401 / 1.4404 529 / 1.456 Charakter Streckg f _{yk} [N/mm²]	7 / 1.431 4 / 1.457 5) istische renze 210 450 600	$A_5 > 8\%$ 1 / 1.4567 / 1 / 1.4578) Bruch-dehnung $A_5 > 8\%$ $A_5 \ge 12\%^{1)}$	1.45 EN	N 10088-1:2014 N ISO 3506-1:202	
Nicht Nicht Hoch	ankerstange trostender Stahl A2 atrostender Stahl A4 akorrosionsbeständig Ankerstange 3)	ger Stahl HCR Festigkeits- klasse 50 70 80	CRC CRC CRC CRC CRC CRC Charakteri Zugfesti f _{uk} [N/mm²] für Ankers	II (1.43 III (1.44 V (1.45 stische gkeit 500 700 800 tangen	301 / 1.430 401 / 1.4404 529 / 1.456 Charakter Streckg f _{yk} [N/mm²] der Klasse	7 / 1.431 4 / 1.457 5) istische renze 210 450 600 50	$A_5 > 8\%$ 1 / 1.4567 / 1 / 1.4578) Bruchdehnung $A_5 > 8\%$ $A_5 \ge 12\%^{1)}$ $A_5 \ge 12\%^{1)}$	1.45 EN	N 10088-1:2014 N ISO 3506-1:202	
Nicht Nicht Hoch	ankerstange trostender Stahl A2 atrostender Stahl A4 akorrosionsbeständig Ankerstange 3)	8.8 ger Stahl HCR Festigkeits- klasse 50 70 80 50 70	CRC	## (1.43 ## (1.44 ## (1.44 ## (1.44 ## (1.45 ##	301 / 1.430 401 / 1.4404 529 / 1.456 Charakter Streckg f _{yk} [N/mm²] der Klasse	7 / 1.431 4 / 1.457 5) istische renze 210 450 600 50, 70 50, 70, 8	$A_5 > 8\%$ 1 / 1.4567 / 1 / 1.4578) Bruchdehnung $A_5 > 8\%$ $A_5 \ge 12\%^{1)}$ $A_5 \ge 12\%^{1)}$ $A_5 \ge 12\%^{1)}$ 30 3:2000,	1.45 EN EN	N 10088-1:2014 N ISO 3506-1:202 N 10088-1:2014 N ISO 3506-2:202	
Nicht Nicht Hoch	ankerstange trostender Stahl A2 atrostender Stahl A4 akorrosionsbeständig Ankerstange 3) Sechskantmutter 3)	8.8 ger Stahl HCR Festigkeits- klasse 50 70 80 50 70	CRC CRC CRC CRC CRC CRC Charakteri Zugfesti fuk [N/mm²] für Ankers für Ankers für Ankers EN ISO 70 nichtroster	II (1.43 III (1.44 V (1.45 stische gkeit 500 700 800 tangen tangen 60 7089 94:2000 nder Sta	301 / 1.430 401 / 1.4404 529 / 1.456 Charakter Streckg [N/mm²] der Klasse der Klasse der Klasse 0:2000, EN 0; EN ISO 8	7 / 1.431 4 / 1.457 5) istische renze 210 450 600 50, 70 50, 70, 8	$A_5 > 8\%$ 1 / 1.4567 / 1 / 1.4578) Bruchdehnung $A_5 > 8\%$ $A_5 \ge 12\%^{1)}$ $A_5 \ge 12\%^{1)}$ 3:2000,	1.45 EN EN	N 10088-1:2014 N ISO 3506-1:202	
Nicht Nicht Hoch 1 2 3a 3b	ankerstange trostender Stahl A2 atrostender Stahl A4 akorrosionsbeständig Ankerstange 3) Sechskantmutter 3) Unterlegscheibe	8.8 ger Stahl HCR Festigkeits- klasse 50 70 80 50 70	CRC CRC CRC CRC CRC CRC Charakteri Zugfesti fuk [N/mm²] für Ankers für Ankers für Ankers EN ISO 70 nichtroster	II (1.43 III (1.44 V (1.45 stische gkeit 500 700 800 tangen tangen 60 7089 94:2000 nder Sta	301 / 1.430 401 / 1.4404 529 / 1.456 Charakter Streckg [N/mm²] der Klasse der Klasse der Klasse der Klasse der Klasse	7 / 1.431 4 / 1.457 5) istische renze 210 450 600 50, 70 50, 70, 8	$A_5 > 8\%$ 1 / 1.4567 / 1 / 1.4578) Bruchdehnung $A_5 > 8\%$ $A_5 \ge 12\%^{1)}$ $A_5 \ge 12\%^{1)}$ 3:2000,	1.45 EN EN	N 10088-1:2014 N ISO 3506-1:202 N 10088-1:2014 N ISO 3506-2:202	
Nicht Nicht Hoch	ankerstange trostender Stahl A2 atrostender Stahl A4 akorrosionsbeständig Ankerstange 3) Sechskantmutter 3) Unterlegscheibe Verfüllscheibe	ger Stahl HCR Festigkeits- klasse 50 70 80 50 70 80	CRC	tangen of tangen	301 / 1.430 401 / 1.4404 529 / 1.456 Charakter Streckg [N/mm²] der Klasse der Klasse der Klasse der Klasse der Klasse	7 / 1.431 4 / 1.457 5) istische renze 210 450 600 50, 70 50, 70, 8	$A_5 > 8\%$ 1 / 1.4567 / 1 / 1.4578) Bruch-dehnung $A_5 > 8\%$ $A_5 \ge 12\%^{1)}$ $A_5 \ge 12\%^{1)}$ $A_5 \ge 12\%^{1)}$ $A_5 \ge 12\%^{1)}$	1.45 EN EN	N 10088-1:2014 N ISO 3506-1:202 N 10088-1:2014 N ISO 3506-2:202	
1 2 3a 3b 4 1) A ₅ 2) Fe	ankerstange trostender Stahl A2 atrostender Stahl A4 akorrosionsbeständi Ankerstange 3) Sechskantmutter 3) Unterlegscheibe Verfüllscheibe Innengewinde-	8.8 ger Stahl HCR Festigkeits- klasse 50 70 80 50 70 80 50 70 80	CRC	II (1.43 III (1.44 V (1.45 stische gkeit 500 700 800 tangen etangen et	301 / 1.430 401 / 1.4404 529 / 1.456 Charakter Streckg [N/mm²] der Klasse der Klasse der Klasse der Klasse der Klasse der Klasse der Klasse	7 / 1.431 4 / 1.457 5) istische renze 210 450 600 50, 70 50, 70, 8 ISO 709 887:2006	$A_5 > 8\%$ 1 / 1.4567 / 1 / 1.4578) Bruchdehnung $A_5 > 8\%$ $A_5 \ge 12\%^{1}$ $A_5 \ge 12\%^{1}$ 3:2000, $A_5 > 8\%$ $A_5 > 8\%$ $A_5 > 8\%$	1.45 EN EN	N 10088-1:2014 N ISO 3506-1:202 N 10088-1:2014 N ISO 3506-2:202	

Betonstahl

 $\varnothing~8, \varnothing~10, \varnothing~12, \varnothing~14, \varnothing~16, \varnothing~20, \varnothing~24, \varnothing~25, \varnothing~28, \varnothing~32$

- Mindestwerte der bezogenen Rippenfläche f_{R,min} nach EN 1992-1-1:2004+AC:2010
- Die Rippenhöhe muss 0,05d ≤ h ≤ 0,07d betragen
 (d: Nenndurchmesser des Stabes; h: Rippenhöhe des Stabes)

Tabelle A2: Werkstoffe Betonstahl

Teil	Benennung	Werkstoff					
Betonstahl							
5	Betonstahl gemäß EN 1992-1-1:2004+AC:2010, Anhang C	Stäbe und Betonstahl vom Ring Klasse B oder C f_{yk} und k gemäß NDP oder NCL gemäß EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$					

Injektionssystem VMH für Beton	
Produktbeschreibung Produktbeschreibung und Werkstoffe Betonstahl	Anhang A5

Spezifizierung des Verwendungszwecks

Statische und quasi-statische Einwirkung	Nutzu	ngsdau	er 50	Jahre	Nutzungsdauer 100 Jahre					
Ankerstangen Innengewindeankerstangen Betonstahl	M8 - M30 VMU-IG M6 - VMU-IG M20 Ø8 - Ø32									
		(geriss	ener oder u	ngerissener	Beton				
Verankerungsgrund	verdich		vehrte	r oder unbe	C20/25 bis C wehrter Norr :2013+A1:20	malbeton	ohne	Fasern		
Bohrlocherstellung		Hamm	erboh	ren / Druckl	uftbohren / 3	Saugboh	ren			
Temperaturbereich 1)	: : : V:	-40°C -40°C -40°C -40°C		+40°C +80°C +120°C +160°C	l: II:			+40°C +80°C		

Seismische Einwirkung	Leistungskategorie C1	Leistungskategorie C2								
Ankerstangen Betonstahl	M8 - M30 Ø8 - Ø32	M12 - M24 								
 Verankerungsgrund	gerissener oder ungerissener Beton Festigkeitsklasse C20/25 bis C50/60									
	· · · · · · · · · · · · · · · · · · ·	wehrter Normalbeton ohne Fasern :2013+A1:2016								
Bohrlocherstellung	Hammerbohren / Druckl	uftbohren / Saugbohren								
Temperaturbereich 1)	I: -40°C bis +40°C II: -40°C bis +80°C III: -40°C bis +120°C IV: -40°C bis +160°C	I: -40°C bis +40°C II: -40°C bis +80°C III: -40°C bis +120°C IV: -40°C bis +160°C								

max. Langzeittemperatur +24°C max. Kurzzeittemperatur +40°C Temperaturbereich I: und Temperaturbereich II: max. Langzeittemperatur +50°C max. Kurzzeittemperatur +80°C und Temperaturbereich III: max. Langzeittemperatur +72°C max. Kurzzeittemperatur +120°C und Temperaturbereich IV: max. Langzeittemperatur +100°C und max. Kurzzeittemperatur +160°C

Injektionssystem VMH für Beton	
Verwendungszweck Spezifikationen	Anhang B1

Spezifizierung des Verwendungszwecks

Anwendungsbedingungen (Umweltbedingungen):

- · Bauteile unter den Bedingungen trockener Innenräume: alle Materialien
- Für alle anderen Bedingungen gilt:
 Verwendung der Werkstoffe aus Anhang A4, Tabelle A1 entsprechend der Korrosionsbeständigkeitsklasse CRC gemäß EN 1993-1-4:2006+A1:2015

Bemessung:

- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.)
- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- Die Bemessung der Verankerungen erfolgt nach EN 1992-4:2018 und Technical Report TR 055, Fassung Februar 2018

Einbau:

- Trockener oder feuchter Beton oder wassergefüllte Bohrlöcher (ausgenommen Seewasser)
- · Bohrlochherstellung durch Hammer-, Druckluft- oder Saugbohren
- · Überkopfmontage erlaubt
- · Einbau durch entsprechend geschultes Personal unter Verantwortung des Bauleiters
- Der Injektionsmörtel wurde für den Einbau bei einer Mindestbetontemperatur von -5°C bewertet, wobei anschließend die Temperatur im Beton nicht mit einer schnellen Geschwindigkeit ansteigen darf, z.B. von der Mindesteinbautemperatur auf 24°C innerhalb von 12 Stunden
- Innengewindeankerstangen: Schrauben und Gewindestange (inkl. Mutter und Unterlegscheibe) müssen mindestens dem Material und der Festigkeitsklasse der verwendeten Innengewindeankerstange entsprechen

Injektionssystem VMH für Beton	
Verwendungszweck Spezifikationen	Anhang B2

Tabelle B1: Montage- und Dübelkennwerte, Ankerstangen

Ankerstange			M8	M10	M12	M16	M20	M24	M27	M30	
Durchmesser Ankerstange d=d _{nom}		[mm]	8	10	12	16	20	24	27	30	
Bohrernenndurchme	sser	d_0	[mm]	10	12	14	18	22	28	30	35
Effektive Verankerun	acticfo	$h_{\text{ef,min}}$	[mm]	60	60	70	80	90	96	108	120
Ellektive veralikerun	gstiele	$h_{\text{ef},\text{max}}$	[mm]	160	200	240	320	400	480	540	600
Durchgangsloch im anzuschließenden	Vorsteck- montage	d _f ≤	[mm]	9	12	14	18	22	26	30	33
Bauteil 2)	Durchsteck- montage	d _f ≤	[mm]	12	14	16	20	24	30	33	40
Maximales Montagedrehmomen	Maximales may Time <		[Nm]	10	20	40 (35) ¹⁾	60	100	170	250	300
Mindestbauteildicke h _{min} [m		[mm]	h _{ef} + 30) mm ≥ 1	00 mm			h _{ef} + 2d ₀			
Minimaler Achsabstand s _{min} [mm		[mm]	40	50	60	75	95	115	125	140	
Minimaler Randabsta	ınd	Cmin	[mm]	35	40	45	50	60	65	75	80

¹⁾ maximales Montagedrehmoment für M12 mit Festigkeitsklasse 4.6

Tabelle B2: Montage- und Dübelkennwerte, Innengewindeankerstangen

Innengewindeankerstange			IG-M 6	IG-M 8	B IG-M 10 IG-M 12 IG-M 16 IG-N				
Innendurchmesser	d ₂	[mm]	6	8	10	12	16	20	
Außendurchmesser 1)	d=d _{nom}	[mm]	10	12	16	20	24	30	
Bohrernenndurchmesser	d₀	[mm]	12	14	18	22	28	35	
Effektive Verenkerungstiefe	h _{ef,min}	[mm]	60	70	80	90	96	120	
Effektive Verankerungstiefe	h _{ef,max}	[mm]	200	240	320	400	480	600	
Durchgangsloch im anzuschließenden Bauteil	d _f ≤	[mm]	7	9	12	14	18	22	
Maximales Montagedrehmoment	max.T _{inst} ≤	[Nm]	10	10	20	40	60	100	
Min. Einschraubtiefe	I_{IG}	[mm]	8	8	10	12	16	20	
Mindestbauteildicke	h _{min}	[mm]	-	0 mm 0 mm	h _{ef} + 2d ₀				
Minimaler Achsabstand	Smin	[mm]	50	60	75	95	115	140	
Minimaler Randabstand	Cmin	[mm]	40	45	50	60	65	80	

¹⁾ mit metrischem Gewinde gemäß EN 1993-1-8:2005+AC:2009

Tabelle B3: Montagekennwerte Betonstahl

Betonstahl	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
Durchmesser Betonstahl	d=d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Bohrernenndurchmesser ¹⁾	d_0	[mm]	10 12	12 14	14 16	18	20	25	30 32	30 32	35	40
Effektive	$h_{\text{ef},\text{min}}$	[mm]	60	60	70	75	80	90	96	100	112	128
Verankerungstiefe	h _{ef,max}	[mm]	160	200	240	280	320	400	480	500	560	640
Mindestbauteildicke	h _{min}	[mm]		h _{ef} + 30 mm ≥ 100 mm				he	f + 2d ₀			
Minimaler Achsabstand	Smin	[mm]	40	50	60	70	75	95	120	120	130	150
Minimaler Randabstand	C _{min}	[mm]	35	40	45	50	50	60	70	70	75	85

¹⁾ für Ø8, Ø10, Ø12, Ø24 und Ø25 können beide Bohrernenndurchmesser verwendet werden

Injektionssystem VMH für Beton Verwendungszweck Montagekennwerte Anhang B3

²⁾ für Anwendungen unter seismischer Einwirkung darf das Durchgangsloch im Anbauteil max. d_{nom} + 1mm betragen oder alternativ ist der Ringspalt zwischen Gewindestange und Anbauteil mit Mörtel kraftschlüssig zu verfüllen

Tabelle B4: Parameter für Reinigungs- und Setzzubehör

Ankerstange	Innengewinde- ankerstange	Betonstahl	Bohrer Ø	Bürsten Ø	min. Bürsten Ø
				d _b =	
[-]	[-]	Ø [mm]	d ₀ [mm]	d₀ [mm]	d _{b,min} [mm]
M8		8	10	11,5	10,5
M10	VMU-IG M6	8 / 10	12	13,5	12,5
M12	VMU-IG M8	10 / 12	14	15,5	14,5
		12	16	17,5	16,5
M16	VMU-IG M10	14	18	20,0	18,5
		16	20	22,0	20,5
M20	VMU-IG M12		22	24,0	22,5
		20	25	27,0	25,5
M24	VMU-IG M16		28	30,0	28,5
M27		24 / 25	30	31,8	30,5
		24 / 25	32	34,0	32,5
M30	VMU-IG M20	28	35	37,0	35,5
		32	40	43,5	40,5

Tabelle B5: Injektionsadapter

Bohrer Ø			aurichtur 'erwendu			
d ₀ [mm]	[-]	•	→	1		
10						
12						
14	Injektionsadapter erforderlich					
16						
18	VM-IA 18					
20	VM-IA 20					
22	VM-IA 22					
25	VM-IA 25	h _{ef} >	h _{ef} >	alle		
28	VM-IA 28	250mm	250mm	alle		
30	VM-IA 30					
32	VM-IA 32					
35	VM-IA 35					
40	VM-IA 40					

Saugbohrer

Bohrernenndurchmesser (d₀): alle Durchmesser Saugbohrer (MKT Saugbohrer SB, Würth Saugbohrer oder Heller Duster Expert Saugbohrer) und einem Klasse M Staubsauger mit einem Unterdruck von mind. 253 hPa und einer Durchflussrate von mind. 42 l/s (150 $\,$ m³/h)

Empfohlene Druckluftpistole (min 6 bar) Bohrernenndurchmesser (d₀): alle Durchmesser

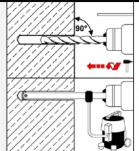
Ausblaspumpe (Volumen 750ml)

Bohrerdurchmesser (d₀): 10 mm bis 20 mm Bohrlochtiefe (h₀): ≤ 10 d_{nom} für ungerissenen Beton

Injektionssystem VMH für Beton

Verwendungszweck

Reinigungs- und Installationszubehör


Anhang B4

Montageanweisung

Bohren

1

Hammerbohren oder Druckluftbohren:

Bohrloch drehschlagend mit vorgeschriebenem Bohrerdurchmesser (Tabelle B1, B2 oder B3) und gewählter Bohrlochtiefe erstellen. Weiter bei <u>Schritt 2.</u> Bei Fehlbohrungen ist das Bohrloch zu vermörteln.

Saugbohrer: siehe Anhang B4

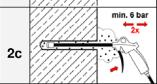
Bohrloch erstellen (Durchmesser und Bohrlochtiefe entsprechend Tabelle B1, B2 oder B3). Eine zusätzliche Reinigung ist nicht erforderlich! Weiter bei Schritt 3.

Bei Fehlbohrungen ist das Bohrloch zu vermörteln.

Reinigung (entfällt bei Verwendung eines Saugbohrers)

Achtung! Vor der Reinigung des Bohrlochs stehendes Wasser entfernen!

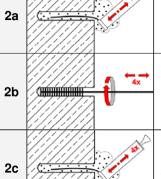
Reinigung mit Druckluft


alle Untergründe und Abmessungen nach Anhang B1

Das Bohrloch vom Bohrlochgrund her mind. **2x** vollständig mit Druckluft (min. 6 bar) ausblasen bis die ausströmende Luft staubfrei ist.

Wird der Bohrlochgrund nicht erreicht, ist eine Verlängerung zu verwenden.

Bohrloch mit geeigneter Drahtbürste gem. Tabelle B4 (minimaler Bürstendurchmesser d_{b,min} ist einzuhalten) mind. **2x** ausbürsten. Erreicht die Bürste den Bohrlochgrund nicht, ist eine geeignete Bürstenverlängerung zu verwenden.



Das Bohrloch vom Bohrlochgrund her erneut mind. 2x vollständig mit Druckluft (min. 6 bar) ausblasen bis die ausströmende Luft staubfrei ist.

Wird der Bohrlochgrund nicht erreicht, ist eine Verlängerung zu verwenden.

2 Manuelle Reinigung

ungerissener Beton, trocken oder feucht; Bohrlochdurchmesser $d_0 \le 20 mm$ und Bohrlochtiefe $h_0 \le 10 \ d_{nom}$

Das Bohrloch vom Bohrlochgrund her mit der Ausblaspumpe mind. **4x** vollständig ausblasen bis die ausströmende Luft staubfrei ist.

Bohrloch mit geeigneter Drahtbürste gem. Tabelle B4 (minimaler Bürstendurchmesser d_{b,min} ist einzuhalten) mind. **4x** ausbürsten. Erreicht die Bürste den Bohrlochgrund nicht, ist eine geeignete Bürstenverlängerung zu verwenden.

Das Bohrloch vom Bohrlochgrund her erneut mit der Ausblaspumpe mind. **4x** vollständig ausblasen bis die ausströmende Luft staubfrei ist.

Nach der Reinigung ist das Bohrloch bis zum Injizieren des Mörtels vor erneutem Verschmutzen in geeigneter Weise zu schützen. Gegebenenfalls ist die Reinigung unmittelbar vor dem Injizieren des Mörtels zu wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrlochs führen.

Injektionssystem VMH für Beton

Verwendungszweck

Montageanweisung

Anhang B5

744708 21 8 06 01-76/21

Montageanweisung (Fortsetzung)

Wor	ntageanweisung (F	ortsetzung)
Inje	ektion	
3		Den mitgelieferten Statikmischer fest auf die Kartusche aufschrauben und Kartusche in eine geeignete Auspresspistole einlegen. Bei jeder Arbeitsunterbrechung länger als die empfohlene Verarbeitungszeit (Tabelle B6) und bei jeder neuen Kartusche ist der Statikmischer zu erneuern.
4	hef	Vor dem Injizieren des Mörtels die geforderte Verankerungstiefe auf der Ankerstange oder dem Bewehrungsstab markieren.
5	min.3x	Der Mörtelvorlauf ist nicht zur Befestigung der Ankerstange geeignet. Daher Vorlauf solange verwerfen, bis sich eine gleichmäßig graue Mischfarbe eingestellt hat, jedoch min. 3 volle Hübe.
6a		Gereinigtes Bohrloch vom Bohrlochgrund her ca. zu 2/3 mit Verbundmörtel befüllen. Langsames Zurückziehen des Statikmischers aus dem Bohrloch verhindert die Bildung von Lufteinschlüssen. Wird der Bohrlochgrund nicht erreicht, ist eine passende Mischerverlängerung zu verwenden. Die Verarbeitungszeiten gemäß Tabelle B6 sind zu beachten.
6b		Injektionsadapter mit Mischerverlängerung sind für folgende Verankerungen zu verwenden (vergl. Tabelle B5): • Installationen horizontal oder vertikal nach unten mit Bohrer-Ø d₀≥ 18 mm und Verankerungstiefen hef > 250 mm • Überkopfmontage: Bohrer-Ø d₀≥ 18 mm

Injektionssystem VMH für Beton

Verwendungszweck

Montageanweisung (Fortsetzung)

Anhang B6

Montageanweisung (Fortsetzung)

Setzen des Befestigungselementes Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Verankerungstiefe einsetzen. 7 Das Befestigungselement muss frei von Schmutz, Fett, Öl und anderen Fremdmaterialien sein. Nach der Installation muss der Ringspalt zwischen Ankerstange und Beton, bei Durchsteckmontage zusätzlich auch im Anbauteil, komplett mit Mörtel verfüllt sein. 8 Wird bei Erreichen der Verankerungstiefe kein Mörtel an der Oberfläche sichtbar. Anwendung vor Beendigung der Verarbeitungszeit wiederholen! Bei Überkopfmontage ist die Ankerstange zu fixieren (z.B. mit Holzkeilen). Die angegebene Aushärtezeit muss eingehalten werden. Befestigungselement 9 während der Aushärtezeit (siehe Tabelle B6) nicht bewegen oder belasten. 10 Ausgetretenen Mörtel entfernen. Nach vollständiger Aushärtung kann das Anbauteil mit dem Montagedrehmoment 11 ≤T_{inst} nach Tabelle B1 oder B2 montiert werden. Bei der Vorsteckmontage kann optional der Ringspalt zwischen Ankerstange und Anbauteil mit Mörtel verfüllt werden. Dafür Unterlegscheibe durch Verfüllscheibe 12 ersetzen und Mischerreduzierung auf den Statikmischer stecken. Ringspalt ist vollständig verfüllt, wenn Mörtel austritt.

Tabelle B6: Verarbeitungs- und Aushärtezeiten

Patan Tampayatus	Vavaubaitus gasait	Mindest-Aushärtezeit				
Beton Temperatur	Verarbeitungszeit	trockener Beton	feuchter Beton			
-5°C bis -1°C	50 min	5 h	10 h			
0°C bis +4°C	25 min	3,5 h	7 h			
+5°C bis +9°C	15 min	2 h	4 h			
+10°C bis +14°C	10 min	1 h	2 h			
+15°C bis +19°C	6 min	40 min	80 min			
+20°C bis +29°C	3 min	30 min	60 min			
+30°C bis +40°C	2 min	30 min	60 min			
Kartuschentemperatur		+ 5°C bis + 40°C				

Injektionssystem VMH für Beton	
Verwendungszweck Montageanweisung (Fortsetzung) / Verarbeitungs- und Aushärtezeiten	Anhang B7

744708 21 8 06 01-76/21

Tabelle C1: Charakteristische Stahltragfähigkeit für Ankerstangen unter Zugbeanspruchung

Ankers	stange			М8	M10	M12	M16	M20	M24	M27	M30
Stahlv	ersagen										
Spannı	ungsquerschnitt	As	[mm²]	36,6	58,0	84,3	157	245	353	459	561
Charal	teristische Widerstände unter	Zugbea	anspruc	hung 1)						
zinkt	Festigkeitsklasse 4.6 und 4.8	$N_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Stahl, verzinkt	Festigkeitsklasse 5.6 und 5.8	$N_{\text{Rk,s}}$	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
Stak	Festigkeitsklasse 8.8	$N_{\text{Rk},s}$	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
ıder	A2, A4 und HCR Festigkeitsklasse 50	$N_{\text{Rk,s}}$	[kN]	18	29	42	79	123	177	230	281
Nichtrostender Stahl	A2, A4 und HCR Festigkeitsklasse 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	_3)	_3)
Nich	A4 und HCR Festigkeitsklasse 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
Teilsic	herheitsbeiwerte 2)										
	Festigkeitsklasse 4.6	γMs,N	[-]				2	,0			
Stahl, verzinkt	Festigkeitsklasse 4.8	γMs,N	[-]				1	,5			
, ver	Festigkeitsklasse 5.6	γMs,N	[-]				2	,0			
Stah	Festigkeitsklasse 5.8	γMs,N	[-]				1	,5			
	Festigkeitsklasse 8.8	γMs,N	[-]				1	,5			
nder	A2, A4 und HCR Festigkeitsklasse 50	γMs,N	[-]				2,	86			
Nichtrostender Stahl	A2, A4 und HCR Festigkeitsklasse 70	γMs,N	[-]			1	,87			_3)	_3)
Nich	A4 und HCR Festigkeitsklasse 80	γMs,N	[-]			1	,6			_3)	_3)

die charakteristischen Widerstände gelten für alle Ankerstangen mit dem hier angegebenen Spannungsquerschnitt As: VMU-A, V-A, VM-A. Für handelsübliche Gewindestangen mit geringerem Spannungsquerschnitt (z.B.: feuerverzinkte Gewindestangen M8, M10 gemäß EN ISO 10684:2004 + AC:2009) gelten die Werte in Klammern.

Injektionssystem VMH für Beton	
Leistungen Charakteristische Stahltragfähigkeit für Ankerstangen unter Zugbeanspruchung	Anhang C1

²⁾ sofern andere nationale Regelungen fehlen

³⁾ Dübelvariante nicht in ETA enthalten

Tabelle C2: Charakteristische Stahltragfähigkeit für Ankerstange	n unter
Querbeanspruchung	

	Querbeansprucnung										
Anke	rstange			M8	M10	M12	M16	M20	M24	M27	M30
Stahl	versagen										
Spani	nungsquerschnitt	As	[mm²]	36,6	58,0	84,3	157	245	353	459	561
Chara	akteristische Widerstände unter Querk	eanspr	uchur	ıg ¹⁾	•		•			•	
Stahl	versagen <u>ohne</u> Hebelarm										
zinkt	Festigkeitsklasse 4.6 und 4.8	V^0 Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
Stahl, verzinkt	Festigkeitsklasse 5.6 und 5.8	V^0 Rk,s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
Stah	Festigkeitsklasse 8.8	$V^0_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
nder	A2, A4 und HCR, Festigkeitsklasse 50	V^0 Rk,s	[kN]	9	15	21	39	61	88	115	140
Nichtrostender Stahl	A2, A4 und HCR, Festigkeitsklasse 70	$V^0_{Rk,s}$	[kN]	13	20	30	55	86	124	_3)	_3)
Nich:	A4 und HCR, Festigkeitsklasse 80	V^0 Rk,s	[kN]	15	23	34	63	98	141	_3)	_3)
Stahl	versagen <u>mit</u> Hebelarm										
ļ ,	Festigkeitsklasse 4.6 und 4.8	$M^0_{Rk,s}$	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
Stahl, verzinkt	Festigkeitsklasse 5.6 und 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
>	Festigkeitsklasse 8.8	M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
nder	A2, A4 und HCR, Festigkeitsklasse 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125
Nichtrostender Stahl	A2, A4 und HCR, Festigkeitsklasse 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
Nichi	A4 und HCR, Festigkeitsklasse 80	$M^0_{Rk,s}$	[Nm]	30	59	105	266	519	896	_3)	_3)
Teilsi	cherheitsbeiwerte 2)										
	Festigkeitsklasse 4.6	γMs,V	[-]				1,6	57			
, 놀	Festigkeitsklasse 4.8	γMs,V	[-]				1,2	25			
Stahl	Festigkeitsklasse 5.6	γMs,V	[-]				1,6	57			
الا م	Festigkeitsklasse 5.8	γMs,V	[-]				1,2	25			
	Festigkeitsklasse 8.8	γMs,V	[-]				1,2	25			
ender	A2, A4 und HCR, Festigkeitsklasse 50	γMs,V	[-]				2,3	38			
Nichtrostender Stahl	A2, A4 und HCR, Festigkeitsklasse 70	γMs,V	[-]			1,5	56			_3)	_3)
Nich	A4 und HCR, Festigkeitsklasse 80	γMs,V	[-]			1,3	33			_3)	_3)

die charakteristischen Widerstände gelten für alle Ankerstangen mit dem hier angegebenen Spannungsquerschnitt As: VMU-A, V-A, VM-A. Für handelsübliche Gewindestangen mit geringerem Spannungsquerschnitt (z.B.: feuerverzinkte Gewindestangen M8, M10 gemäß EN ISO 10684:2004 + AC:2009) gelten die Werte in Klammern

Injektionssystem VMH für Beton

Leistungen

Charakteristische Stahltragfähigkeit für Ankerstangen unter Querbeanspruchung

Anhang C2

²⁾ sofern andere nationale Regelungen fehlen

³⁾ Dübelvariante nicht in ETA enthalten

Tabelle C3: Charakteristische Werte für Betonausbruch und Spalten

Ankerstangen / In	nengewindeankerstang	alle Größen			
Betonausbruch					
Eaktor k	ungerissener Beton	k ucr,N	[-]	11,0	
Faktor k ₁ -	gerissener Beton	k _{cr,N}	[-]	7,7	
Randabstand		C _{cr,N}	[mm]	1,5 ∙ h _{ef}	
Achsabstand		Scr,N	[mm]	2,0 • C _{cr,N}	
Spalten					
Charakteristischer \	Widerstand	N^0 Rk,sp	[kN]	min(N _{Rk,p} ;N ⁰ _{Rk,c})	
	h/h _{ef} ≥ 2,0			1,0 • h _{ef}	
Randabstand	2,0> h/h _{ef} > 1,3	C cr,sp	[mm]	2 • h _{ef} (2,5 - h / h _{ef})	
_	h/h _{ef} ≤ 1,3			2,4• h _{ef}	
Achsabstand		S cr,sp	[mm]	2,0 • C _{cr,sp}	

Injektionssys	stem VMH	für Beton
---------------	----------	-----------

Leistungen

Charakteristische Werte für Betonausbruch und Spalten

Anhang C3

Tabelle C4: Charakteristische Werte der Zugtragfähigkeit für Ankerstangen statische und quasi-statische Einwirkung, Nutzungsdauer 50 Jahre

Statische und quasi-statische Emwirkung, Nutzungsdauer 30 danie											
Ankerstangen				М8	M10	M12	M16	M20	M24	M27	M30
Stahlversagen											
Charakteristischer Widerstand N _{Rk,s}			[kN]	A _s • f _{uk} oder siehe Tabelle C1							
Teilsicherheitsb	eiwert	γMs,N	[-]					belle C			
Kombiniertes \	/ersagen durch Hei	ausziehen i		nausbr	uch						
Charakteristise	che Verbundtragfäh	igkeit im <u>ur</u>	gerissen	<u>en</u> Bet	on C20	/25					
	I 40°C / 2	4°C		17	17	16	15	14	13	13	13
Temperatur-	II 80°C / 5		[N/mm ²]	17	17	16	15	14	13	13	13
bereich	III 120°C / 7	2°C τ _{Rk,ucr}	[IN/IIIII-] 	15	14	14	13	12	12	11	11
•	VI 160°C / 10	0°C		12	11	11	10	9,5	9,0	9,0	9,0
Charakteristisc	che Verbundtragfäh	igkeit im <u>ge</u>	rissenen	Beton	C20/25	5					
	I 40°C / 2	24°C		7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
Temperatur-	II 80°C / 5		[N 1 / 2]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
bereich	III 120°C / 7	′2°C τ _{Rk,cr}	[N/mm²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0
-	VI 160°C / 10	0°C		5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5
Reduktionsfak	tor ψ ⁰ sus im Beton C	20/25		•	•	•	•		•		
	I 40°C / 2	24°C			0,90						
Temperatur-	II 80°C / 5	0°C	[-]	0,87							
bereich	III 120°C / 7	'2°C Ψ ⁰ sus		0,75							
	VI 160°C / 10	0°C		0,66							
			C25/30					02			
			C30/37					04			
Erhöhungsfakto	r für Beton	Ψc	C35/45					07			
			C40/50 C45/55	1,08							
			C50/60	1,09 1,10							
Betonausbruc	1						.,				
Relevante Para						s	iehe Ta	belle C	23		
Spalten											
Relevante Para	meter					s	iehe Ta	ibelle C	3		
Montagebeiwe	rt										
trockener	Saugbol						1	,2			
oder feuchter	manuelle Reinig		[-]		1	,2			e Leistu	ıng bev	vertet
Beton	Druckluftreinig	ung					1	,0			
wassergefülltes Bohrloch	Druckluftreinig	ung γ _{inst}	[-]				1	,4			

Injektionssystem VMH für Beton

Leistungen

Charakteristische Werte der Zugtragfähigkeit für Ankerstangen, Nutzungsdauer 50 Jahre

Anhang C4

Tabelle C5: Charakteristische Werte der Zugtragfähigkeit für Ankerstangen, statische und quasi-statische Einwirkung, Nutzungsdauer 100 Jahre

							1				1			
Ankerstangen						М8	M10	M12	M16	M20	M24	M27	M30	
Stahlversagen														
Charakteristisch	er Wid	erstand	N	I _{Rk,s}	[kN]	A _s • f _{uk} oder siehe Tabelle C1								
Teilsicherheitsbeiwert γ _{Ms,N} [-]					[-]				ehe Ta					
Kombiniertes V	ersage	en durch Hera	uszieh	en ι	ınd Betor	nausbr	uch							
Charakteristisc	he Vei	bundtragfähig	jkeit im	ı <u>un</u>	gerissene	en Bete	on C20	/25						
Temperatur-	ŀ	40°C / 24°C			[N] /rea rea 2]	17	17	16	15	14	13	13	13	
bereich	Ш	80°C / 50°C	τRk,ucr	r,100	[N/mm²]	17	17	16	15	14	13	13	13	
Charakteristisc	he Vei	bundtragfähig	<u>rissenen</u>	Beton	C20/25	5								
Temperatur-		40°C / 24°C	7 0.	τ _{Rk,cr,100} [N	[N/mm²]	5,5	6,0	6,5	6,5	6,5	6,5	6,5	6,5	
bereich	Ш	80°C / 50°C	€Rk,cr	r,100	[14/11111-]	5,5	6,0	6,5	6,5	6,5	6,5	6,5	6,5	
					C25/30				1,	02				
					C30/37	1,04								
Erhöhungsfaktor	r für Be	aton)16-	C35/45	1,07								
Linonangsiakto	i idi be			ψс	C40/50	1,08								
					C45/55				1,	09				
					C50/60	1,10								
Betonausbruch)													
Relevante Parar	neter							si	ehe Ta	ıbelle C	3			
Spalten														
Relevante Parar	meter							si	ehe Ta	ıbelle C	3			
Montagebeiwer	t													
		Saugbohren							1	,2				
trockener oder feuchter Beton		manuelle Rein	igung	γinst	[-]		1	,2		Kein	e Leistu	ıng bev	verte	
Druckluftreinigung						1,0								
wassergefülltes Bohrloch		Druckluftrein	igung -	γinst	[-]				1	,4				

Injektionssys	tem VMH	für Beton
---------------	---------	-----------

Leistungen

Charakteristische Werte der **Zugtragfähigkeit** für **Ankerstangen, 100 Jahre** Nutzungsdauer

Anhang C5

Tabelle C6: Charakteristische Werte der Quertragfähigkeit für Ankerstangen, statische und quasi-statische Einwirkung

Ankerstangen			М8	M10	M12	M16	M20	M24	M27	M30
Stahlversagen ohne Hebelari	m									
Charakteristischer Widerstand Stahl verzinkt, Fkl 4.6, 4.8, 5.6 und 5.8	$V^0_{Rk,s}$	[kN]			00		A₅ • f _{uk} Tabelle	C2		
Charakteristischer Widerstand Stahl verzinkt, Fkl. 8.8 Nichtrostender Stahl A2, A4 und HCR	V^0 Rk,s	[kN]			oc		A _s • f _{uk} Tabelle	C2		
Duktilitätsfaktor	k ₇	[-]		1,0						
Teilsicherheitsbeiwert	γMs,V	[-]	siehe Tabelle C2							
Stahlversagen <u>mit</u> Hebelarm										
Charakteristischer Biegewiderstand	M ⁰ Rk,s	[Nm]			od		V _{el} • f _{uk} Tabelle	C2		
Elastisches Widerstandsmoment	Wel	[mm³]	31	62	109	277	541	935	1387	1874
Teilsicherheitsbeiwert	γMs,V	[-]				siehe Ta	belle C2			
Betonausbruch auf der lasta	bgewan	dten S	eite							
Pry-out Faktor	k 8	[-]				2	,0			
Betonkantenbruch										
Effektive Ankerlänge	I _f	[mm]	min (h _{ef} ;12 d _{nom}) min (h _{ef} ;300mm)							
Außendurchmesser der Ankerstange	d _{nom}	[mm]] 8 10 12 16 20 24 27 30						30	
Montagebeiwert	γinst	[-]	1,0							

Injektionssystem VMH für Beton	
Leistungen Charakteristische Werte der Quertragfähigkeit für Ankerstangen	Anhang C6

Tabelle C7: Charakteristische Werte der Zugtragfähigkeit für Ankerstangen, seismische Einwirkung (Leistungskategorie C1 + C2), Nutzungsdauer 50 und 100 Jahre

Ankerstange	n				M8	M10	M12	M16	M20	M24	M27	M30
Stahlversage	n											
Ob a valeta viatia	alaau VA <i>l</i> i	d a vaka wad	N _{Rk,s,C1}	[kN]				1,0 •	N _{Rk,s}			
Charakteristis	Charakteristischer Widerstand			[kN]	-	1)		1,0 •	N _{Rk,s}		_1)	
Teilsicherheits	sbeiwert		γMs,N	[-]			S	iehe Ta	belle C	1		
Kombiniertes	Kombiniertes Versagen durch Herausziehen und Betonausbruch											
Charakteristische Verbundtragfähigkeit im Beton C20/25 bis C50/60												
	l:	40°C / 24°C	τ _{Rk,C1}	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
	1.		TRk,C2	[N/mm ²]	-	_1)		3,5	3,3	2,3	_1)	
	II:	80°C / 50°C	τRk,C1	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
Temperatur-			τRk,C2	[N/mm²]	-	1)	3,6	3,5	3,3	2,3	-	1)
bereich	III:	120°C / 72°C	τRk,C1	[N/mm ²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0
	111.		τRk,C2	[N/mm ²]	-	1)	3,1 3,0 2,8 2,0		2,0	_1)		
	VI:	160°C / 100°C	τRk,C1	[N/mm ²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5
	۷۱.	100 07 100 0	τRk,C2	[N/mm²]	-	1)	2,5	2,7	2,5	1,8	-	1)
Montagebeiw	vert .											
Druckluft-	trocker	er oder feuchter Be	eton y _{inst}	[-]				1	,0			
reinigung	wassergefülltes Bohrloch			[-]	1,4							
Saugbohren	trocker	er oder feuchter Be	eton γ _{inst}	[-]				1	,2			

¹⁾ Keine Leistung bewertet

Tabelle C8: Charakteristische Werte der Quertragfähigkeit für Ankerstangen, seismische Einwirkung (Leistungskategorie C1 + C2)

Ankerstangen	M8	M10	M12	M16	M20	M24	M27	M30			
Stahlversagen <u>ohne</u> Hebelarm											
Charaktariatical	oor Widerstand	V _{Rk,s,C1}	[kN]	0,7 • V ⁰ Rk,s							
Charaktenstisci	Charakteristischer Widerstand -		[kN]	_1)		0,7 • V ⁰ Rk,s			_1)		
Teilsicherheitsb	eiwert	γMs,V	[-]	siehe Tabelle C2							
	ohne Ringspalt			1,0							
Faktor für Befestigungen	mit Lochspiel zwischen Ankerstange und Anbauteil	α _{gap} [-]		0,5							

¹⁾ Keine Leistung bewertet

Injektionssystem VMH für Beton	
Leistungen Charakteristische Werte für Ankerstangen unter seismischer Einwirkung	Anhang C7

Tabelle C9: Charakteristische Werte der Zugtragfähigkeit für Innengewindeankerstangen, statische und quasi-statische Einwirkung, Nutzungsdauer 50 Jahre

	ausche und quasi-	วเลเเ ร เ	THE EIII		,,	•					
Innengewindea	nkerstange			VMU-IG M6	VMU-IG M8	VMU-IG M10	VMU-IG M12	VMU-IG M16	VMU-IG M20		
Stahlversagen i	1)										
Charakteristisch	er Widerstand Fkl 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123		
Stahl, verzinkt				16	27	46	67	121	196		
Teilsicherheitsbe	eiwert	γMs,N	[-]	1,5							
Charakteristisch Nichtrostender S		N _{Rk,s}	[kN]	14	26	41	59	110	124 ²⁾		
Teilsicherheitsbe	eiwert	γMs,N	[-]			1,87			2,86		
Kombiniertes V	ersagen durch Heraus	ziehen	und Bet	onausbru	ıch						
Charakteristisc	he Verbundtragfähigke	eit im <u>u</u>	ngerisse	<u>nen</u> Beto	n C20/25						
	I: 40°C / 24°C			17	16	15	14	13	13		
Temperatur- bereich	II: 80°C / 50°C	-	 [N/mm²]	17	16	15	14	13	13		
	III: 120°C / 72°C		[[14/11111-]	14	14	13	12	12	11		
	VI: 160°C / 100°C			11	11	10	9,5	9,0	9,0		
Charakteristische Verbundtragfähigkeit im gerissenen Beton C20/25											
	I: 40°C / 24°C	_		7,5	8,0	9,0	8,5	7,0	7,0		
Temperatur-	II: 80°C / 50°C	⊣	[N/mm²]	7,5	8,0	9,0	8,5	7,0	7,0		
bereich	III: 120°C / 72°C			6,5	7,0	7,5	7,0	6,0	6,0		
	VI: 160°C / 100°C			5,5	6,0	6,5	6,0	5,5	5,5		
Reduktionsfaktor ψ ⁰ _{sus} im Beton C20/25											
	l: 40°C / 24°C	_		0,90							
Temperatur- bereich	II: 80°C / 50°C	Ψ^0 sus	[-]	0,87							
bereich	VI: 160°C / 100°C					0,					
	VI. 100 07 100 0		C25/30				02				
			C30/37				04				
			C35/45				07				
Erhöhungsfaktor	für Beton	Ψc					08				
			C45/55				09				
			C50/60				10				
Betonausbruch											
Relevante Parar	neter					siehe Ta	belle C3				
Spalten											
Relevante Parar					siehe Ta	belle C3					
Montagebeiwer	t										
trockener oder	Saugbohren	_				1	,2				
feuchter Beton	manuelle Reinigung	_ ,	[-]		1,2			_eistung b	ewertet		
wassergefülltes Bohrloch	Druckluftreinigung Druckluftreinigung		[-]				,0 ,4				
DOTITIOCIT		1									

¹⁾ Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel

Injektionssystem VMH für Beton

Leistungen

Charakteristische Werte der **Zugtragfähigkeit** für **Innengewindeankerstangen**, **50 Jahre** Nutzungsdauer

Anhang C8

²⁾ für VMU-IG M20: Festigkeitsklasse 50

Tabelle C10: Charakteristische Werte der Zugtragfähigkeit für Innengewindeankerstangen, statische und quasi-statische Einwirkung, Nutzungsdauer 100 Jahre

	<u> </u>										
Innengewindean	kerstange			VMU-IG M6	VMU-IG M8	VMU-IG M10	VMU-IG M12	VMU-IG M16	VMU-IG M20		
Stahlversagen 1)											
Charakteristischer	Fkl 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123		
Widerstand Stahl, verzinkt	Fkl 8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196		
Teilsicherheitsbei	wert	γMs,N	[-]			1	,5				
Charakteristischer nichtrostender Sta		N _{Rk,s}	[kN]	14	26	41	59	110	124 ²⁾		
Teilsicherheitsbei	wert	γMs,N	[-]		•	1,87			2,86		
Kombiniertes Versagen durch Herausziehen und Betonausbruch											
Charakteristisch	e Verbundtragfähi	gkeit im <u>u</u>	ıngerisse	<u>nen</u> Beto	n C20/25						
Temperatur-	I: 40°C / 24°C	HTD: 400	[N/mm²]	17	16	15	14	13	13		
bereich	II: 80°C / 50°C	THK,UCF, TUU	[[14/11111]	17	16	15	14	13	13		
Charakteristisch	e Verbundtragfähi	gkeit im g	erissene	n Beton (C20/25						
Temperatur-	I: 40°C / 24°C	τRk,cr100	 [N/mm²]	6,0	6,5	6,5	6,5	6,5	6,5		
bereich	II: 80°C / 50°C	UHK,CI 100	[14/11111]	6,0	6,5	6,5	6,5	6,5	6,5		
			C25/30				02				
			C30/37	1,04							
Erhöhungsfaktor f	ür Beton	Ψс	C35/45	1,07							
			C40/50 C45/55	1,08							
			C50/60	•							
Betonausbruch			000/00			٠,	10				
Relevante Parame	eter					siehe Ta	belle C3				
Spalten											
Relevante Parame	eter				siehe Tabelle C3						
Montagebeiwert											
	Saugbohren					1	,2				
trockener oder feuchter Beton	trockener oder manuelle		[-]	1,2 Keine Leistung be					ewertet		
			1,0								
wassergefülltes Bohrloch	Druckluftreinigung	γinst	[-]	1,4							

¹⁾ Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel

²⁾ für VMU-IG M20: Festigkeitsklasse 50

Injektionssystem VMH für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit für Innengewindeankerstangen, 100 Jahre Nutzungsdauer	Anhang C9

Tabelle C11: Charakteristische Werte unter Querbeanspruchung für Innengewindeankerstangen, statische und quasi-statische Einwirkung

				,	VMILIO		\/A41.10	\/A411.10	\/AUL 10	
Inneng	ewindeankerstange			VMU-IG M6	VMU-IG M8	VMU-IG M10	VMU-IG M12	VMU-IG M16	VMU-IG M20	
Stahlve	ersagen <u>ohne</u> Hebelarm ¹⁾									
, kt	Charakteristischer Widerstand Fkl. 5.8	V ⁰ Rk,s	[kN]	6	10	17	25	45	74	
Stahl, verzinkt	Charakteristischer Fkl. 8.8 Widerstand	V ⁰ Rk,s	[kN]	8	14	23	34	60	98	
	Teilsicherheitsbeiwert	γMs,V	[-]			1,	25			
Nicht- rostender Stahl	Charakteristischer Widerstand, Fkl. 70 A4 / HCR	V ⁰ Rk,s	[kN]	7	13	20	30	55	62 ²⁾	
ros	Teilsicherheitsbeiwert	γMs,V	[-]			1,56			2,38	
Duktilitä	itsfaktor	k ₇	[-]			1	,0			
Stahlve	ersagen <u>mit</u> Hebelarm ¹⁾									
ţ,	Charakteristischer Biegewiderstand Fkl. 5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325	
Stahl, verzinkt	Charakteristischer Biegewiderstand Fkl. 8.8	M ⁰ Rk,s	[Nm]	12	30	60	105	267	519	
	Teilsicherheitsbeiwert	γMs,V	[-]	1,25						
Nicht- rostender Stahl	Charakteristischer Biegewiderstand Fkl. 70 A4/HCR) M ⁰ Rk,s	[Nm]	11	26	53	92	234	643 ²⁾	
ros	Teilsicherheitsbeiwert	γ Ms,V	[-]	1,56 2,38						
Betona	usbruch auf der lastabgev	/andten	Seite							
Pry-out	Faktor	k ₈	[-]			2	,0			
Betonk	antenbruch									
	e Ankerlänge	lf	[mm]	min (h _{ef} ;12 d _{nom}) min 300r						
Außend Ankerst	durchmesser der ange	d_{nom}	[mm]	10 12 16 20 24					30	
Montag	ebeiwert	γinst	[-]	1,0						

¹⁾ Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen (Ausnahme: VMU-IG M20). Die charakteristischen Tragfähigkeiten für Stahlversagen gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel.

Injektionssystem VMH für Beton	
Leistungen Charakteristische Werte unter Querbeanspruchung für Innengewindeankerstangen	Anhang C10

²⁾ für VMU-IG M20: Ankerstangen mit Innengewinde: Festigkeitsklasse 50; Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter): Festigkeitsklasse 70

Tabelle C12: Charakteristische Werte der Zugtragfähigkeit für Betonstahl,
statische und quasi-statische Einwirkung, 50 Jahre Nutzungsdauer

Stationary Sta		latische und qua	31-3tati	SCIIC LI	110011	Kung	, 30	Jaili	- INUI	zung	Suau	<u> </u>		
Charakteristischer Widerstand NRicia [KN] Stahlspannungsquerschnitt As [mm²] 50 79 113 154 201 314 452 491 616 804	Betonstahl				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlspannungsquerschnitt	Stahlversagen					•		<u>'</u>						
Tellsicherheitsbeiwert YM6,N [-]	Charakteristische	er Widerstand	N _{Rk,s}	[kN]					As •	$f_{uk}^{1)}$				
Combinertes Versagen durch Herausziehen und Betonausbruch Setonausbruch Setonausbru	Stahlspannungsc	querschnitt	As	[mm²]	50	79	113	154	201	314	452	491	616	804
Charakteristische Verbundtragfähigkeit im ungerissenen Settor C20/25 Temperatur-bereich II: 80°C / 50°C VI: 160°C / 100°C VI: 160°C	Teilsicherheitsbe	iwert	γMs,N	[-]					1,	4 ²⁾				
I: 40°C / 24°C Temperatur-bereich II: 80°C / 50°C Telk.uer [N/mm²] 14 14 14 14 13 13 13 13	Kombiniertes Ve	ersagen durch Herai	usziehe	n und Be	tonau	sbruc	h							
Temperatur-bereich III:	Charakteristisch		keit im	ungeriss	<u>enen</u>	Beton	C20/	25						
Table														
Militon 120°C / 72°C 13 12 12 12 11 11 11 11			TBk ucr	[N/mm²]										<u> </u>
Charakteristische Verbundtragfähigkeit im gerissenen Beton C20/25 Charakteristische Verbundtragfähigkeit im gerissenen Beton C20/25 Charakteristische Verbundtragfähigkeit im gerissenen Beton C20/25 Charakteristische Verbundtragfähigkeit im gerissenen Beton C20/25 Charakteristische Verbundtragfähigkeit im gerissenen Beton C20/26 Charakteristische Verbundtragfähigkeit im gerissenen Beton C20/25 Charakteristische Verbundtragfähigkeit im gerissenen Beton C20/26 Charakteristische Verbundtragfähigkeit im gerissenen Beton C20/26 Charakteristische Verbundtragfähigkeit im gerissenen Beton C20/25 Charakteristische Verbundtragfähige Verbundtrag	bereich		VTIK,UCI	[,]										
Temperatur-bereich 1				_				9,0	9,0	9,0	9,0	9,0	8,5	8,5
Temperatur-bereich II: 80°C / 50°C III: 120°C / 72°C VI: 160°C / 100°C VI:	Charakteristisch		keit im	<u>gerissen</u>										
Description Table Tab											_			
Vi: 160°C / 100°C 4,0 4,5 5,0 5			τ _{Rk,cr}	[N/mm²]										
Comparison	bereich			-			-							
Section	D 1111 (11		2/25		4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0
Temperatur-bereich 11: 80°C / 50°C 111: 120°C / 72°C VI: 160°C / 100°C VI:	Reduktionstakto	<u>'</u>	0/25							20				
The proof of the														
VI: 160°C / 100°C 0,66			ψ^0_{sus}	[-]										
C25/30	Borolon													
Erhöhungsfaktor für Beton		VI. 100 07 100 0		C25/30										
Erhöhungsfaktor für Beton Ψc C35/45 C40/50 1,08 C45/55 1,09 C50/60 1,10 Betonausbruch Relevante Parameter Siehe Tabelle C3 Spalten Relevante Parameter siehe Tabelle C3 Montagebeiwert trockener oder feuchter Beton Saugbohren manuelle Reinigung Druckluftreinigung Druckluftreinigung Tout [-] Tabelle C3 Keine Leistung bewertet 1,0 Keine Leistung bewertet 1,0 Montagebeiwert Tout Reine Leistung bewertet 1,0														
Erhohungstaktor für Beton														
C45/55 1,09 C50/60 1,10 Betonausbruch Relevante Parameter siehe Tabelle C3 Montagebeiwert trockener oder feuchter Beton Saugbohren manuelle Reinigung Druckluftreinigung 1,2 Keine Leistung bewertet Druckluftreinigung 1,2 Keine Leistung bewertet 1,0 wassergefülltes	Erhöhungsfaktor	für Beton	Ψο											
C50/60 1,10 Betonausbruch Relevante Parameter siehe Tabelle C3 Spalten Relevante Parameter siehe Tabelle C3 Montagebeiwert 1,2 trockener oder feuchter Beton manuelle Reinigung Druckluftreinigung 1,2 Keine Leistung bewertet 1,0 wassergefülltes Druckluftreinigung														
Betonausbruch Relevante Parameter siehe Tabelle C3 Spalten Relevante Parameter siehe Tabelle C3 Montagebeiwert 1,2 trockener oder feuchter Beton manuelle Reinigung Druckluftreinigung 1,2 Keine Leistung bewertet 1,0 wassergefülltes Druckluftreinigung 1,4														
Relevante Parameter Siehe Tabelle C3 Spalten Relevante Parameter Siehe Tabelle C3 Montagebeiwert trockener oder feuchter Beton Saugbohren manuelle Reinigung Druckluftreinigung wassergefülltes Druckluftreinigung was [-] 1,2 Keine Leistung bewertet 1,0	Betonausbruch													
Spalten Relevante Parameter siehe Tabelle C3 Montagebeiwert Saugbohren trockener oder feuchter Beton 1,2 manuelle Reinigung Druckluftreinigung γinst [-] 1,2 Druckluftreinigung 1,0		neter						sie	he Ta	belle	C3			
Montagebeiwert trockener oder feuchter Beton Saugbohren manuelle Reinigung 1,2 Druckluftreinigung γinst 1,2 Wassergefülltes Druckluftreinigung 1,0														
Montagebeiwert trockener oder feuchter Beton Saugbohren manuelle Reinigung 1,2 Druckluftreinigung γinst 1,2 Wassergefülltes Druckluftreinigung 1,0	•	neter						sie	he Ta	belle	C3			
Saugbohren trockener oder feuchter Beton Saugbohren manuelle Reinigung γinst [-] 1,2 Keine Leistung bewertet 1,0 Wassergefülltes Druckluftreinigung στ. [-] 1,4	Montagebeiwert													
feuchter Beton	-		en						1,	2				
Druckluftreinigung 1,0 wassergefülltes Druckluftreinigung 25 1 [-] 1.4				t [-]			1,2				ne Le	istung	bewe	rtet
	leuchter beton	Druckluftreinigur							1,	0				
Bohrloch Brucklattreitigung yinst [-] 1,4	Bohrloch	Druckluftreinigu							1,	4				

¹⁾ fuk ist den Spezifikationen des Betonstahls zu entnehmen

Injektionssystem VMH für Beton

Leistungen

Charakteristische Werte der Zugtragfähigkeit für Betonstahl, 50 Jahre Nutzungsdauer

Anhang C11

²⁾ sofern andere nationale Regelungen fehlen

Tabelle C13: Charakteristische Werte der Zugtragfähigkeit für Betonstahl, statische und quasi-statische Einwirkung, 100 Jahre Nutzungsdauer

				1					1				1
Betonstahl				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversagen													
Charakteristischer	Widerstand	$N_{Rk,s}$	[kN]					As •	f _{uk} 1)				
Stahlspannungsqu	uerschnitt	As	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheitsbeiv	vert	γMs,N	[-]					1,	4 ²⁾				
Kombiniertes Ver	rsagen durch Herai	usziehe	n und Be	tonau	sbruc	h							
Charakteristische	e Verbundtragfähig	keit im	ungeriss	<u>enen</u>	Beton	C20/	25						
Temperatur	I: 40°C / 24°C	FD: 100	[N/mm²]	14	14	14	14	13	13	13	13	13	13
bereich	II: 80°C / 50°C	Rk,ucr,100	[14/11111]	14	14	14	14	13	13	13	13	13	13
Charakteristische	e Verbundtragfähig	keit im	gerissen	<u>en</u> Be	ton C	20/25							
Temperatur-	I: 40°C / 24°C	TD: 100	[N/mm²]	4,5	4,5	4,5	4,5	4,5	4,0	4,0	4,0	4,0	4,0
bereich	II: 80°C / 50°C	TRk,cr,100	[14/11111-]	4,5	4,5	4,5	4,5	4,5	4,0	4,0	4,0	4,0	4,0
			C25/30					1,	02				
			C30/37					1,	04				
Erhöhungsfaktor fi	ür Beton	116	C35/45					1,	07				
Linonangsiaktorit	di Beton	ψс	C40/50					1,	80				
			C45/55					1,	09				
			C50/60					1,	10				
Betonausbruch													
Relevante Parame	eter						sie	ehe Ta	belle	C3			
Spalten													
Relevante Parame	eter						sie	ehe Ta	belle	СЗ			
Montagebeiwert													
	Saugbohre	en						1,	,2				
trockener oder feuchter Beton	manuelle Reinigui	ng γ _{ins}	[-]			1,2			Ke	ine Le	istung	bewe	ertet
	Druckluftreinigu	ng						1,	,0				
wassergefülltes Bohrloch	Druckluftreinigu	ng γ _{ins}	[-]					1,	,4				

¹⁾ fuk ist den Spezifikationen des Betonstahls zu entnehmen

Injektionssystem VMH für Beton

Leistungen

Charakteristische Werte der Zugtragfähigkeit für Betonstahl, 100 Jahre Nutzungsdauer

Anhang C12

²⁾ sofern andere nationale Regelungen fehlen

Tabelle C14: Charakteristische Werte unter Querbeanspruchung für Betonstahl, statische und quasi-statische Einwirkung

		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
rm											
V^0 Rk,s	[kN]				(0,50 • A	Վ₅ ∙ f _{uk} ¹)			
As	[mm²]	50	79	113	154	201	314	452	491	616	804
γMs,V	[-]					1,	5 ²⁾				
k ₇	[-]					1	,0				
n											
M ⁰ Rk,s	[Nm]					1,2 • W	∕ _{el} • f _{uk} ¹)			
Wel	[mm³]	50	98	170	269	402	785	1357	1534	2155	3217
γMs,V	[-]					1,	5 ²⁾				
abgewa	ndten S	eite									
k ₈	[-]					2	,0				
I f	[mm]			min	(h _{ef} ;12	d _{nom})			min (h _{ef} ; 300	Dmm)
d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
γinst	[-]					1	,0				
	As γMs,V k7 M ⁰ Rk,s Wel γMs,V abgewa k8	V ⁰ _{Rk,s} [kN] As [mm ²] γMs,ν [-] kτ [-] M ⁰ _{Rk,s} [Nm] W _{el} [mm ³] γMs,ν [-] abgewandten Set [Mm] If [mm] d _{nom} [mm]	rm V ⁰ Rk,s [kN] As [mm²] 50 γMs,v [-] k7 [-] 1 M ⁰ Rk,s [Nm] Wel [mm³] 50 γMs,v [-] abgewandten Seite k8 [-] If [mm] dnom [mm] 8	rm V ⁰ Rk,s [kN] As [mm ²] 50 79 γMs,v [-] k7 [-] 1 M ⁰ Rk,s [Nm] Wel [mm ³] 50 98 γMs,v [-] abgewandten Seite k8 [-] If [mm] dnom [mm] 8 10	rm V ⁰ Rk,s [kN] As [mm ²] 50 79 113 γMs,v [-] k7 [-] M ⁰ Rk,s [Nm] Wel [mm ³] 50 98 170 γMs,v [-] abgewandten Seite k8 [-] If [mm] min (dnom [mm] 8 10 12	rm V ⁰ Rk,s [kN] As [mm ²] 50 79 113 154 γMs,v [-] k7 [-] M ⁰ Rk,s [Nm] Wel [mm ³] 50 98 170 269 γMs,v [-] abgewandten Seite k8 [-] It [mm] min (het;12 dnom [mm] 8 10 12 14	rm V°Rk,s [kN] 0,50 · A As [mm²] 50 79 113 154 201 γMs,v [-] 1,	VORK,S [kN] 0,50 · As · fuk ¹ As [mm²] 50 79 113 154 201 314 γMs,V [-] 1,5²) 1,0 MORK,S [Nm] 1,2 · Wel · fuk ¹ 1 Wel [mm³] 50 98 170 269 402 785 γMs,V [-] 1,5²) 1,5²) abgewandten Seite k8 [-] 2,0 If [mm] min (hef;12 dnom) dnom [mm] 8 10 12 14 16 20	rm V ⁰ _{Rk,s} [kN] 0,50 · A _s · f _{uk} ¹) A _s [mm ²] 50 79 113 154 201 314 452 γ _{Ms,V} [-] 1,5 ²) k ₇ [-] 1,0 M ⁰ _{Rk,s} [Nm] 1,2 · W _{el} · f _{uk} ¹) W _{el} [mm ³] 50 98 170 269 402 785 1357 γ _{Ms,V} [-] 1,5 ²) abgewandten Seite k ₈ [-] 2,0	rm V ⁰ Rk,s [kN]	rm V ⁰ _{Rik,s} [kN] As [mm ²] 50 79 113 154 201 314 452 491 616 γ _{Ms,V} [-] N M ⁰ _{Rik,s} [Nm] 1,2 · W _{el} · f _{uk} 1) W _{el} [mm ³] 50 98 170 269 402 785 1357 1534 2155 γ _{Ms,V} [-] 1,5 2) abgewandten Seite k ₈ [-] Ri [mm] min (h _{ef} ;12 d _{nom}) min (h _{ef} ; 300 d _{nom} [mm] 8 10 12 14 16 20 24 25 28

¹⁾ ist den Spezifikationen des Betonstahls zu entnehmen ²⁾ sofern andere nationale Regelungen fehlen

Injektionssystem VMH für Beton **Anhang C13** Leistungen Charakteristische Werte unter Querbeanspruchung für Betonstahl

Tabelle C15: Charakteristische Werte der Zugtragfähigkeit für Betonstahl, seismische Einwirkung (Leistungskategorie C1), Nutzungsdauer 50 und 100 Jahre

										1				_
Betonstahl					Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversage	en													
Charakteristis	scher	Widerstand	$N_{Rk,s,C1}$	[kN]					A _s •	f _{uk} 1)				
Stahlspannur	ngsqu	uerschnitt	As	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheit	sbeiv	vert	γMs,N	[-]					1,4	↓ ²⁾				
Kombinierte	s Vei	rsagen durch H	erausziel	nen und E	Beton	ausbri	uch							
Charakterist	ische	e Verbundtragfä	higkeit ir	m Beton C	20/25	bis C	50/60							
	l:	40°C / 24°C			5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
Temperatur-	II:	80°C / 50°C		[NI/mm2]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
bereich	III:	120°C / 72°C	τRk,C1	[N/mm²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0
	VI:	160°C / 100°C			4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0
Montagebeiv	vert													
trockener ode	er	Saugbohren	γinst	[-]					1	,2				
feuchter Beto	n	Druckluft-	γinst	[-]					1,	,0				
wassergefüllte Bohrloch	es	reinigung	γ̃inst	[-]					1,	,4				

¹⁾ ist den Spezifikationen des Betonstahls zu entnehmen

Tabelle C16: Charakteristische Werte der Quertragfähigkeit für Betonstahl, seismischer Einwirkung (Leistungskategorie C1)

Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversagen ohne Hebelarr	n											
Charakteristischer Widerstand	$V_{Rk,s,C1}$	[kN]				0	,35 · A	A _s • f _{uk}	1)			
Stahlspannungsquerschnitt	As	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheitsbeiwert	γMs,V	[-]					1,5	5 ²⁾				

¹⁾ ist den Spezifikationen des Betonstahls zu entnehmen

Injektionssystem VMH für Beton	
Leistungen Charakteristische Werte für Betonstahl unter seismischer Einwirkung	Anhang C14

²⁾ sofern andere nationale Regelungen fehlen

²⁾ sofern andere nationale Regelungen fehlen

				$\overline{}$	$\overline{}$					$\overline{}$
Ankerstange			M8	M10	M12	M16	M20	M24	M27	M30
Verschiebungsfakt ungerissener Beton,		d quasi-statisc	che Einw	irkung, N	lutzungs	dauer 50	und 100) Jahre		
Temperaturbereich I: 40°C / 24°C	δ_{N0} - Faktor		0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046
II: 80°C / 50°C	δ _{N∞} -Faktor		0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,060
Temperaturbereich	δ_{N0} - Faktor	mm]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,048
III: 120°C / 72°C	δ _{N∞} -Faktor	N/mm ²	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,062
Temperaturbereich	δ_{N0} - Faktor		0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,179
VI: 160°C / 100°C	δ _{N∞} -Faktor		0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,184
Verschiebungsfakt gerissener Beton, st		uasi-statische	e Einwirk	ung, Nut	zungsda	uer 50 ur	nd 100 Ja	ahre		
Temperaturbereich	δ_{N0} - Faktor		0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106
I: 40°C / 24°C II: 80°C / 50°C	δ _{N∞} -Faktor	1	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137
Temperaturbereich	δ_{N0} - Faktor	mm1	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110
III: 120°C / 72°C	δ _{N∞} -Faktor	[[] N/mm ²]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143
Temperaturbereich	δ_{N0} - Faktor		0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412
VI: 160°C / 100°C	δ _{N∞} -Faktor		0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424
Verschiebung, seis	mische Einv	virkung (C2)								
Alle Temperatur-	δN,C2 (DLS)	[mm]	_2	2)	0,24	0,27	0,29	0,27		2)
bereiche .	δn,c2 (ULS)	[mm]	1	<i>''</i> Γ	0,55	0,51	0,50	0,58		-)

¹⁾ Berechnung der Verschiebung

Tabelle C18: Verschiebung unter Querbeanspruchung (Ankerstange)

				_						
Ankerstange			М8	M10	M12	M16	M20	M24	M27	M30
Verschiebungsfak gerissener und ung		on, statische u	nd quasi	-statisch	e Einwirk	kung				
Alle Temperatur-	δ_{V0} -Faktor	[mm//lcNI)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
bereiche	δ _{ν∞} -Faktor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Verschiebung, se	ismische Ein	wirkung (C2)								
Alle Temperatur-	δv,c2(DLS)	[mm]	ئے	2)	3,6	3,0	3,1	3,5		2)
bereiche	δv,c2(ULS)	[mm]		-,	7,0	6,6	7,0	9,3		-,

¹⁾ Berechnung der Verschiebung

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-Faktor} \cdot V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-Faktor} \cdot V; \end{split}$$

V: einwirkende Querkraft

Injektionssystem VMH für Beton

Leistungen

Verschiebung (Ankerstange)

Anhang C15

 $[\]delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$;

τ: einwirkende Verbundspannung unter Zugbeanspruchung

 $[\]begin{array}{l} \delta_{N\infty} = \delta_{N\infty}\text{-Faktor} \cdot \tau; \\ ^{2)} \text{ Keine Leistung bewertet} \end{array}$

²⁾ Keine Leistung bewertet

Tabelle C19: Verschiebung unter Zugbeanspruchung (Innengewindeankerstange)

Innengewindeankerst	ange		VMU-IG M 6	VMU-IG M 8	VMU-IG M 10	VMU-IG M 12	VMU-IG M 16	VMU-IG M 20
Verschiebungsfaktore ungerissener Beton, sta		asi-statische E	inwirkung,	Nutzungso	dauer 50 u	nd 100 Jah	nre	
Temperaturbereich I: 40°C / 24°C	δ_{N0} -Faktor		0,032	0,034	0,037	0,039	0,042	0,046
II: 80°C / 50°C	δ _{N∞} -Faktor		0,042	0,044	0,047	0,051	0,054	0,060
Temperaturbereich	δ_{N0} -Faktor	rmm	0,034	0,035	0,038	0,041	0,044	0,048
III: 120°C / 72°C	δ _{N∞} -Faktor	$\left[\frac{1}{N/mm^2}\right]$	0,044	0,045	0,049	0,053	0,056	0,062
Temperaturbereich	δ _{N0} -Faktor		0,126	0,131	0,142	0,153	0,163	0,179
VI: 160°C / 100°C	δ _{N∞} -Faktor		0,129	0,135	0,146	0,157	0,168	0,184
Verschiebungsfaktore gerissener Beton, statis		-statische Einv	virkung, Nı	utzungsdau	uer 50 und	100 Jahre		
Temperaturbereich I: 40°C / 24°C	$\delta_{\text{N0}} ext{-} ext{Faktor}$		0,083	0,085	0,090	0,095	0,099	0,106
II: 80°C / 50°C	δ _{N∞} -Faktor		0,107	0,110	0,116	0,122	0,128	0,137
Temperaturbereich	δ _{N0} -Faktor	mm1	0,086	0,088	0,093	0,098	0,103	0,110
III: 120°C / 72°C	δ _{N∞} -Faktor	$\left[\frac{N}{mm^2}\right]$	0,111	0,114	0,121	0,127	0,133	0,143
Temperaturbereich	δ _{N0} -Faktor		0,321	0,330	0,349	0,367	0,385	0,412
VI: 160°C / 100°C	δ _{N∞} -Faktor		0,330	0,340	0,358	0,377	0,396	0,424

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0} \text{-Faktor} \quad \cdot \ \tau; \\ \qquad \quad \tau \text{: einwirkende Verbundspannung unter Zugbeanspruchung}$

 $\delta_{N\infty} = \delta_{N\infty}\text{-Faktor }\cdot\tau;$

Tabelle C20: Verschiebung unter Querbeanspruchung (Innengewindeankerstange)

Innengewindeankersta	inge		VMU-IG M 6	VMU-IG M 8	VMU-IG M 10	VMU-IG M 12	VMU-IG M 16	VMU-IG M 20
Verschiebungsfaktore gerissener und ungeriss		tatische und qu	uasi-statisc	che Einwirk	ung			
Alle	δ_{V0} -Faktor	[mm/(kN)]	0,07	0,06	0,06	0,05	0,04	0,04
Temperaturbereiche	δ _{ν∞} -Faktor	[IIIIII/(KIN)]	0,10	0,09	0,08	0,08	0,06	0,06

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}\text{-Faktor} \cdot V; \qquad \qquad \text{V: einwirkende Querkraft}$

 $\delta_{V\infty} = \delta_{V\infty}\text{-Faktor }\cdot V;$

Injektionssystem VMH für Beton

Leistungen

Verschiebungen (Innengewindeankerstange)

Anhang C16

Tabelle C21: Verschiebung unter Zugbeanspruchung (Betonstahl)

Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Verschiebungsfaktoren ¹⁾ ungerissener Beton, statische und quasi-statische Einwirkung, Nutzungsdauer 50 und 100 Jahre												
Temperaturbereich I: 40°C / 24°C II: 80°C / 50°C	δ_{N0} - Faktor		0,031	0,032	0,034	0,035	0,037	0,039	0,042	0,043	0,045	0,048
	δ _{N∞} -Faktor		0,040	0,042	0,044	0,045	0,047	0,051	0,054	0,055	0,058	0,063
Temperaturbereich _ III: 120°C / 72°C	δ _{N0} - Faktor		0,032	0,034	0,035	0,036	0,038	0,041	0,044	0,045	0,047	0,050
	δ _{N∞} -Faktor		0,042	0,044	0,045	0,047	0,049	0,053	0,056	0,057	0,060	0,06
Temperaturbereich _ VI: 160°C / 100°C	δ _{N0} - Faktor		0,121	0,126	0,131	0,137	0,142	0,153	0,163	0,164	0,172	0,18
	δ _{N∞} -Faktor		0,124	0,129	0,135	0,141	0,146	0,157	0,168	0,169	0,177	0,192
Verschiebungsfakto gerissener Beton, sta		asi-statisch	ne Einw	rirkung,	Nutzui	ngsdau	er 50 u	nd 100	Jahre			
Temperaturbereich I: 40°C / 24°C II: 80°C / 50°C	δ _{N0} - Faktor	[mm N/mm ²]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,10
	δ _{N∞} -Faktor		0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,14
Temperaturbereich _ III: 120°C / 72°C	δ _{N0} - Faktor		0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,113
	δ _{N∞} -Faktor		0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,148
Temperaturbereich _ VI: 160°C / 100°C	δ _{N0} - Faktor		0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,42
	δ _{N∞} -Faktor		0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,44

¹⁾ Berechnung der Verschiebung

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-}\text{Faktor} \quad \cdot \, \tau; \hspace{1cm} \tau \text{: einwirkende Verbundspannung unter Zugbeanspruchung}$

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor $\cdot \tau$;

Tabelle C22: Verschiebung unter Querbeanspruchung (Betonstahl)

Betonstahl			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Verschiebungsfaktoren ¹⁾ gerissener und ungerissener Beton, statische und quasi-statische Einwirkung												
Alle Temperatur- bereiche	δ_{V0} - Faktor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
	 δ _{V∞} -Faktor		0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}\text{-Faktor} \cdot V;$

V: einwirkende Querkraft

 $\delta_{V^{\infty}} = \delta_{V^{\infty}}\text{-Faktor }\cdot V;$

Injektionssystem VMH für Beton

Leistungen

Verschiebung (Betonstahl)

Anhang C17