

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011



## European Technical Assessment ETA-19/0175 of 2023/09/19

## **I GENERAL PART**

| Technical Assessment Body issuing the ETA and designated according to Article<br>29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S |                                                                                                                           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| Trade name of the construction product:                                                                                                 | fischer PowerFast II screws<br>fischer PowerFast II – Chipboard screws<br>fischer PowerFast II – Wood Construction screws |  |
| Product family to which the construction product belongs:                                                                               | Screws for use in timber constructions                                                                                    |  |
| Manufacturer:                                                                                                                           | fischerwerke GmbH & Co. KG<br>Klaus-Fischer-Straße 1<br>DE-72178 Waldachtal<br>Phone: +49 7443 120<br>www.fischer.de      |  |
| Manufacturing plant:                                                                                                                    | fischerwerke                                                                                                              |  |
| This European Technical<br>Assessment contains:                                                                                         | 78 pages including 11 Annexes which form an integral part of the document                                                 |  |
| This European Technical<br>Assessment is issued in<br>accordance with Regulation<br>(EU) No 305/2011, on the basis<br>of:               | European Assessment Document (EAD)<br>EAD 130118-01-0603 "Screws and threaded rods<br>for use in timber constructions"    |  |
| This version replaces:                                                                                                                  | The ETA with the same number issued on 2021-<br>08-09                                                                     |  |

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

## CONTENT

| I    |           |                                                                                           |    |
|------|-----------|-------------------------------------------------------------------------------------------|----|
| Π    | SPEC      | IFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT                                            | 7  |
| 1    |           | Technical description of the product and intended use                                     | 7  |
| 2    |           | Specification of the intended use in accordance with the applicable EAD                   | 8  |
| 3    |           | Performance of the product and references to the methods for its assessment               | 9  |
|      |           | 3.1 Mechanical resistance and stability (BWR1)                                            | 9  |
|      |           | 3.2 Safety in case of fire (BWR2)                                                         | 9  |
|      |           | 3.4 Safety and accessibility in use (BWR4)                                                | 9  |
|      |           | 3.8 Method of verification                                                                | 10 |
|      |           | 3.9 General aspects related to the performance of the product                             | 10 |
|      | 4         | Attestation and verification of constancy of performance (AVCP) system applied, with      |    |
|      |           | reference to its legal base                                                               | 11 |
|      | 5         | Technical details necessary for the implementation of the AVCP system, as foreseen in the |    |
|      |           | applicable EAD                                                                            | 11 |
|      | nex A:    |                                                                                           |    |
| fisc | her Pow   | rerFast II – Chipboard screws                                                             |    |
| Din  | nensions  | and Materials                                                                             | 12 |
|      | A1        | Countersunk head with full- or partial thread                                             | 12 |
|      | A2        | Raised countersunk head with full- or partial thread                                      | 13 |
|      | A3        | Pan head with full- or partial thread                                                     | 14 |
|      | A4        | Chipboard screw with clamping effect                                                      | 15 |
|      | A5        | Flange head with full- or partial thread                                                  | 16 |
|      | A6        | Step countersunk head with full- or partial thread                                        | 17 |
| fisc | her Pow   | verFast II – Wood Construction screws                                                     |    |
| Din  | nensions  | and Materials                                                                             | 18 |
|      | A7        | Countersunk head with full- or partial thread                                             | 18 |
|      | A8        | Flange head with full- or partial thread                                                  | 19 |
|      | A9        | Step Countersunk head with full- or partial thread                                        | 20 |
|      | A10       | Hexagon head with full- or partial thread                                                 | 21 |
|      | A11       | Hexagon head with washer and full- or partial thread                                      | 22 |
|      | A12       | FAFS-Clip of adjustable frame screw                                                       | 23 |
|      | A13       | Washers                                                                                   | 24 |
| Anr  | nex B:    |                                                                                           |    |
| Spe  | cificatio | ns of the intended use of fischer PowerFast II screws                                     | 25 |
| -    | B1        | Materials for the intended use                                                            | 25 |
|      | B2        | Materials for the intended use                                                            | 26 |
|      | B3        | Specifications of the intended use – Design                                               | 27 |
|      | B4        | Specifications of the intended use – Installation                                         | 28 |
|      |           | Minimum timber cross sections, end- and edge distances – notations for ST and PL          | 29 |
|      | B6        | Minimum distances and spacings, laterally loaded screws                                   |    |
|      |           | Materials: ST-c, FST-c, GST-c, GLT-c, BGLT-c                                              | 30 |
|      |           | Minimum timber cross sections, end- and edge distances, axially loaded screws             |    |
|      |           | Materials: ST-c, FST-c, GST-c, GLT-c, BGLT-c                                              | 30 |
|      | B7        | Minimum timber cross sections, end- and edge distances – notations for CLT                | 31 |
|      | B8        | Minimum distances and spacings, laterally and axially loaded screws                       |    |
|      |           | Material: CLT                                                                             | 32 |
| Anr  | nex C:    |                                                                                           |    |
|      |           | ce of fischer PowerFast II screws and references to the                                   |    |
|      |           | ed for its assessment                                                                     | 33 |
| -    | C1        | Characteristic values of the screws                                                       | 33 |

## CONTENT

|             |         | CONTENT                                                                                         |          |
|-------------|---------|-------------------------------------------------------------------------------------------------|----------|
| Annex D:    |         |                                                                                                 |          |
|             | verFast | II screws for the structural use in timber constructions                                        | 34       |
| D1          | 1       | Mechanical Resistance and Stability                                                             | 34       |
| D2          | 1.1     | Lateral load-carrying capacity <i>F</i> <sub>v,Rk</sub>                                         | 35       |
|             | 1.1.1   | Embedment strength <i>f</i> <sub>h,ɛ,k</sub> , Materials: ST-c/d, FST-c/d, GST-c/d, BGLT, GLT-c | 35       |
| D3          | 1.1.2   | Embedment strength $f_{h,k}$ , Material: CLT                                                    | 36       |
|             | 1.1.3   | Embedment strength $f_{h,\beta,\varepsilon,k}$ , Material: LVL-c                                | 36       |
| D4          | 1.1.4   | Embedment strength $f_{h,\alpha,\beta,k}$ , Material: LVL-d                                     | 37       |
| D5          | 1.1.5   | Embedment strength $f_{h,k}$ , plane surface                                                    | 51       |
| DJ          | 1.1.5   | Materials: OSB, HB, MB, SB, PLY, RPB                                                            | 38       |
| D6          | 1.1.6   | Embedment strength $f_{h,k}$ , edge face                                                        | 50       |
| Do          | 1.1.0   | Materials: OSB, HB, MB, SB, PLY, RPB                                                            | 39       |
| D7          | 1.1.7   | Embedment strength $f_{h,k}$ for the use in combination with predrilled steel plates            | 40       |
| DI          | 1.1.7   | Effective number of laterally loaded screws each row $n_{ef}$                                   | 40       |
| D8          | 1.1.0   | Effective number of laterally loaded screws each row $n_{ef}$                                   | 41       |
| D8<br>D9    | 1.2     |                                                                                                 | 41       |
| D9          | 1.2     | Axial resistance of the screw under tension $F_{ax,t,Rd}$                                       | 42       |
|             | 1.2.1   | Withdrawal capacity $F_{ax,\alpha,Rk}$                                                          | 40       |
| <b>D</b> 10 | 1 2 2   | Materials: ST-c, FST, GST, GLT-c, BGLT                                                          | 42       |
| D10         | 1.2.2   | Withdrawal capacity $F_{ax,\alpha,Rk}$                                                          |          |
|             |         | Materials: ST-d, GLT-d and LVL-d.                                                               | 43       |
| D11         |         | Characteristic values of the withdrawal strength in Structural Timber of                        |          |
|             |         | fischer PowerFast II – Chipboard screws in Softwood and Laminated veneer                        |          |
|             |         | lumber according to ETA-14/0354, referred to <i>l</i> <sub>ef</sub>                             | 44       |
|             |         | Characteristic values of the withdrawal strength in Structural Timber of                        |          |
|             |         | fischer PowerFast II – Wood Construction screws in Softwood and Laminated                       |          |
|             |         | veneer lumber according to ETA-14/0354, referred to <i>l</i> ef                                 | 44       |
| D12         |         | Characteristic values of the withdrawal strength in Structural Timber of                        |          |
|             |         | fischer PowerFast II – Wood Construction screws in Softwood and Laminated                       |          |
|             |         | veneer lumber according to ETA-14/0354, referred to <i>l</i> g                                  | 45       |
|             |         | Characteristic values of the withdrawal strength of fischer PowerFast II –                      |          |
|             |         | Chipboard screws in the plane surface of derived wood panels                                    | 45       |
| D13         |         | Characteristic values of the withdrawal strength of fischer PowerFast II –                      |          |
|             |         | Chipboard screws in edge surface of derived wood panels                                         | 46       |
| D14         | 1.2.3   | Withdrawal capacity $F_{ax,Rk}$ , Material: CLT                                                 | 47       |
| D15         | 1.2.4   | Effective number of axially loaded screws $n_{\rm ef}$                                          | 48       |
| D16         | 1.3     | Head pull-through capacity $F_{\text{head,Rk}}$                                                 | 49       |
| -           | 1.3.1   | Head pull-through parameter $f_{head,k}$                                                        | -        |
|             |         | Materials: ST-c, FST, GST, GLT-c, BGLT, CLT, WFB, WPB                                           | 49       |
| D17         |         | Head pull-through parameter $F_{\text{head,k}}$ of Screws with clamping effect and              | .,       |
| 217         |         | FAFS-Clip, Materials: ST-c, FST, GST, GLT-c, BGLT, CLT, SWP-P                                   | 50       |
| D18         | 1.4     | Compression capacity                                                                            | 50       |
| D10         | 1.1     | Materials: ST, FST, GST, GLT-c, BGLT, LVL-c                                                     | 51       |
| D19         |         | Buckling capacities of screws with free span length                                             | 52       |
| D19<br>D20  | 1.5     | Combined laterally and axially loaded screws                                                    | 52<br>53 |
| D20<br>D21  | 1.5     | Slip modulus in the Serviceability Limit State                                                  | 53<br>54 |
| $D_{21}$    | 1.6.1   |                                                                                                 | 54<br>54 |
|             | 1.6.1   | Laterally loaded screws.                                                                        | 54<br>54 |
| D11         |         | Axially loaded screws                                                                           |          |
| D22         | 1.7     | Slip modulus in the Ultimate Limit State                                                        | 55       |
| 500         | 1.7.1   | Laterally loaded screws                                                                         | 55       |
| D23         | 1.7.2   | Axially loaded screws                                                                           | 56       |

## CONTENT

| Annex E (i        | informative):                                                                             |    |
|-------------------|-------------------------------------------------------------------------------------------|----|
| Applicatio        | ns of fischer PowerFast II screws –                                                       |    |
| Fixation of       | f on-roof insulations                                                                     | 57 |
| E1                | Fixations of on-roof insulation system for sufficiently compression resistant insulations | 57 |
| E2                | Fixations of on-roof insulation system for sufficiently compression resistant insulations | 58 |
| E3                | Point loads $F_{Ed}$ perpendicular to the battens by the screws                           | 59 |
| E4                | Design of the battens                                                                     | 60 |
| E5                | Design of the thermal insulation                                                          | 61 |
| E6                | Design of predominantly axially loaded screws                                             | 62 |
| E7                | Design of predominantly laterally loaded screws                                           | 63 |
| Annex F (i        | informative)                                                                              |    |
| Applicatio        | ns of fischer PowerFast II screws –                                                       |    |
| FAFS-Clip         | o of adjustable frame screw: Installation of ceilings or technical shells                 | 64 |
| F1                | FAFS-Clip of adjustable frame screw:                                                      |    |
|                   | Installation of ceilings or technical shells, overview and application                    | 64 |
| F2                | FAFS-Clip of adjustable frame screw:                                                      |    |
|                   | Installation of ceilings or technical shells, structural design                           | 65 |
| Annex G (         | informative)                                                                              |    |
| Applicatio        | ns of fischer PowerFast II screws –                                                       |    |
| Façade an         | d Installation Systems                                                                    | 66 |
| G1                | Examples of different Façade Systems BWM                                                  | 66 |
| G2                | Examples of Installation Systems for different mounting channels                          | 67 |
| G3                | Examples of Installation Systems for different mounting channels                          | 68 |
| Annex H (         | informative):                                                                             |    |
| Applicatio        | ns of fischer PowerFast II screws –                                                       |    |
| Inclined so       | crews with an angle of 45°                                                                | 69 |
| H1                | Inclined screws with an angle of 45° for the use in single shear plane                    |    |
|                   | steel-to-timber connections                                                               | 69 |
| H2                | Inclined screws for the use in single shear plane timber-to-timber connections            | 70 |
| Annex J (i        | nformative):                                                                              |    |
| Applicatio        | ns of fischer PowerFast II screws –                                                       |    |
| <b>Fire Desig</b> |                                                                                           | 71 |
| J1                | Simplified rules for unprotected laterally loaded screws                                  | 71 |
| J2                | Simplified rules for protected laterally loaded screws                                    | 72 |
| J3                | Simplified rules for protected laterally loaded screws                                    | 73 |
| J4                | Simplified rules for protected axially loaded screws                                      | 74 |
| Annex K (         | informative):                                                                             |    |
| Applicatio        | ns of fischer PowerFast II screws –                                                       |    |
| Screw Glu         | ing methods                                                                               | 75 |
| K1                | Screw gluing methods                                                                      | 75 |
| K2                | Screw gluing, ribbed panels                                                               | 76 |
| K3                | Screw gluing, basic values                                                                | 77 |
| K4                | Screw gluing, calculation models                                                          | 78 |
| Annex L (i        | informative):                                                                             |    |
|                   | ns of fischer PowerFast II screws –                                                       |    |
| Screw hea         | d supporting plate                                                                        | 79 |
| L1                | Screw Head Supporting Plates                                                              | 79 |
|                   |                                                                                           |    |

The document refers to the following standards and regulations:

| EAD 130118-01-0603 | Screws and threaded rods for use in timber constructions, EOTA 2019                            |
|--------------------|------------------------------------------------------------------------------------------------|
| EN 300:2006        | Oriented Strand boards (OSB) – Definitions, classifications and specifications                 |
| EN 301:2023        | Adhesives, phenolic and aminoplastic, for load-bearing timber structures - Classification and  |
|                    | performance requirements                                                                       |
| EN 312:2010        | Particleboards – Specifications                                                                |
| EN 314-2:1997      | Plywood - Bonding Quality – Requirements                                                       |
| EN 338:2016        | Structural timber – Strength classes                                                           |
| EN 520:2010        | Gypsum plasterboards – Definitions, requirements and test methods                              |
| EN 622-2:2006      | Fibreboards – Specifications – Part 2: Requirements for hardboards                             |
| EN 622-3:2006      | Fibreboards – Specifications – Part 3: Requirements for medium boards                          |
| EN 636:2016        | Plywood – Specifications                                                                       |
| EN 826:2013        | Thermal insulating products for building applications - Determination of compression behaviour |
| EN 13501-1:2020    | Fire classification of construction products and building elements – Part 1                    |
| EN 1912:2013       | Structural Timber – Strength classes – Assignment of visual grades and species                 |
| EN 1990:2013       | Eurocode – Basis of structural design                                                          |
| EN 1993-1-1:2014   | Eurocode 3: Design of steel structures – Part 1-1: General rules and rules for buildings       |
| EN 1993-1-8:2012   | Eurocode 3: Design of steel structures – Part 1-8: Design of joints                            |
| EN 1995-1-1:2014   | Eurocode 5: Design of timber structures – Part 1-1: General – Common rules and rules for       |
|                    | buildings                                                                                      |
| EN 1995-1-2:2011   | Eurocode 5: Design of timber structures – Part 1-2: General – Structural fire design           |
| EN 1999-1-1:2014   | Eurocode 9: Design of aluminium structures – Part1-1: General structural rules                 |
| EN 13353:2011      | Solid wood panels (SWP) - Requirements                                                         |
| EN 13986:2015      | Wood-based panels for use in construction - Characterisites, evaluation of conformity and      |
|                    | marking                                                                                        |
| EN 14080:2013      | Timber structures – Glued laminated timber and glued Solid Timber – Requirements               |
| EN 14081-1:2019    | Timber structures – Strength graded structural timber with rectangular cross section –         |
|                    | Part 1: General requirements                                                                   |
| EN 14374:2016      | Timber structures – Laminated Veneer Lumber (LVL) – Requirements                               |
| EN 14592:2012      | Timber Structures – Dowel-type fasteners - Requirements                                        |
| EN 15283-2:2009    | Gypsum boards with fibrous reinforcements - Definitons, requirements and test methods -        |
|                    | Part 2: Gypsum fibre boards                                                                    |
| EN 15425:2023      | Adhesives – One component polyurethan (PUR) for load-bearing timber structures –               |
|                    | Classifications and performance requirements                                                   |
| EN 15497:2014      | Structural finger jointed Solid Timber – Performance requirements and minimum production       |
|                    | requirements                                                                                   |
| EN ISO 7094:2000   | Plain washers - Extra large series, product grade C                                            |
| ETA-14/0354:2018   | Pollmeier Furnierwerkstoffe GmbH                                                               |

## II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

# 1 Technical description of the product

»fischer PowerFast II – Chipboard screws and Wood Construction screws« are self-tapping screws to be used in timber structures. They shall be threaded over a part of the length or over the whole length. The screws are produced from a carbon steel wire. fischer »PowerFast II – Chipboard screws« have an outer thread diameter d (nominal diameter) between 3,0 mm and 6,0 mm. »fischer PowerFast II – Wood Construction screws« have a nominal diameter between 8,0 mm to 12,0 mm. Where corrosion protection is required, the material or coating shall be declared in accordance with the relevant specification given in Annex A of EN 14592.

They are zinc-plated (e.g. yellow-zinced or bluezinced), bonus-zinc-coated, burnished, nickel-plated or brass-plated. The mean thickness of the zinc-plated screws is min.  $5 \,\mu$ m.

The FAFS-Clip is made of zinc die cast for »fischer PowerFast II – Chipboard screws« with countersunk head and a diameter of 5,0 mm.

Product and product description are given in Annex A.

The characteristic material values, dimensions and tolerances of the »fischer PowerFast II« screws not indicated in Annexes shall correspond to the respective values laid down in the Technical Documentation of this European Technical Assessment (ETA).

Specifications of the product itself are given in Annex C. The screws are intended to be used with a minimum embedment depth (penetration length) given in Annex D. It is possible to consider the influences of the tip of the screws on the load-carrying capacities. The intended use and exemplary applications are also detailed in the Annex E to Annex K.

## 2 Specification of the intended use in accordance with the applicable European Assessment Document (hereinafter EAD)

The performances given in Section 3 are only valid if the »fischer PowerFast II« screws are used in compliance with the specifications and conditions given in Annex C.

The intended use of the screws is in timber connections for which all requirements of mechanical resistance, stability and safety in use in the sense of the Basic Works Requirements 1 and 4 of Regulation 305/2011 (EU) shall be fulfilled.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the screws of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the products.

| Characteristic                                                                             | Assessment of characteristic                                                                                                                                  |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.1 Mechanical resistance and stability (BWR1)                                             |                                                                                                                                                               |
| Dimensions                                                                                 | See annex A                                                                                                                                                   |
| Characteristic yield moment                                                                | See annex C                                                                                                                                                   |
| Bending angle                                                                              | See annex C                                                                                                                                                   |
| Characteristic withdrawal parameter                                                        | See annex D                                                                                                                                                   |
| Characteristic head-pull through parameter of screws                                       | See annex D                                                                                                                                                   |
| Characteristic tensile strength                                                            | See annex C                                                                                                                                                   |
| Characteristic torsional strength                                                          | See annex C                                                                                                                                                   |
| Insertion moment                                                                           | See annex C                                                                                                                                                   |
| Spacing, end and edge distances of the screws and minimum thickness of the timber material | See Annex B                                                                                                                                                   |
| Slip modulus for laterally and axially loaded screws                                       | See annex D                                                                                                                                                   |
| Durability against corrosion                                                               | No performance assessed                                                                                                                                       |
| <b>3.2 Safety in case of fire (BWR2)</b><br>Reaction to fire                               | The screws are considered to satisfy <b>Euroclass A1</b> in accordance with EN 13501-1 and Delegated Regulation 2016/364, according to EC Decision 96/603/EC. |
| <b>3.3 Safety and accessibility in use (BWR4)</b><br>Same as BWR 1                         | See aspects covered by BWR1                                                                                                                                   |

## **3** Performance of the product and references to the methods for its assessment

See additional information in section 3.4 and 3.5

#### 3.4 Methods of verification

The assessment of the performance »fischer PowerFast II« screws in relation to the applicable BWR's has been made in accordance with the European Assessment Document (EAD) No. EAD 130118-01-0603 »Screws and threaded rods for use in timber constructions«.

#### **Durability and serviceability**

The screws have been assessed as having satisfactory durability and serviceability when used in timber structures using the timber species described in EN 1995-1-1 and subjected to the conditions defined by service classes 1 and 2.

## **3.5** General aspects related to the performance of the product

The European Technical Assessment is issued for the screws based on agreed data/information, deposited with ETA-Danmark, which identifies the product that has been assessed. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to ETA-Danmark before the changes are introduced. ETA-Danmark will decide if such changes affect the ETA and consequently the validity of the CE marking based on the ETA and if so whether further assessment or alterations to the ETA, shall be necessary.

The screws are manufactured in accordance with the provisions of the European Technical Assessment using the automated manufacturing process as identified during the inspection of the plant by the assessment body issuing the ETA and the notified body and laid down in the technical documentation. The installation shall be carried out in accordance with EN 1995-1-1 (Eurocode 5), or an appropriate national code unless, otherwise defined in this document.

4 Attestation and verification of constancy of performance (hereinafter AVCP) system applied, with reference to its legal base

#### 4.1 AVCP system

According to the decision 97/176/EC of the European Commission, as amended, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 3.

## 5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE-marking.

Issued in Copenhagen on 2023-09-19 by

Thomas Bruun Managing Director, ETA-Danmark



Screws with partial thread > 60 mm, I<sub>s</sub> with shank ribs

2) Other screw lengths with I<sub>s</sub> min ≤ I<sub>s</sub> ≤ I<sub>s</sub> max and other thread lengths I<sub>gf</sub> resp. I<sub>gp</sub> ≥ 4 d up to max, standard thread lengths are allowed

<sup>3)</sup> For 10 mm  $\leq$  l<sub>gf</sub> resp.,l<sub>gp</sub>  $\leq$  18 mm  $\rightarrow$  tolerance ±1,5 mm and for 18 mm < l<sub>gf</sub> resp. l<sub>gp</sub>  $\leq$  30 mm  $\rightarrow$  tolerance ±1,7 mm

#### fischer PowerFast II - chipboard screw

Annex A1

Dimensions and Materials - Countersunk head with full- or partial thread



Screws with partial thread > 60 mm, I<sub>s</sub> with shank ribs

2) Other screw lengths with l<sub>s</sub> min ≤ l<sub>s</sub> ≤ l<sub>s</sub> max and other thread lengths l<sub>gf</sub> resp. l<sub>gp</sub> ≥ 4 ·d up to max, standard thread lengths are allowed

<sup>3)</sup> For 10 mm  $\leq$  l<sub>gf</sub> resp.,l<sub>gp</sub>  $\leq$  18 mm  $\rightarrow$  tolerance ±1,5 mm and for 18 mm < l<sub>gf</sub> resp. l<sub>gp</sub>  $\leq$  30 mm  $\rightarrow$  tolerance ±1,7 mm

#### fischer PowerFast II - Chipboard screw

Dimensions and Materials - Raised countersunk head with full- or partial thread



All sizes in [mm]

Screws with partial thread > 60 mm, I<sub>s</sub> with shank ribs

2) Other screw lengths with l<sub>s</sub> min ≤ l<sub>s</sub> ≤ l<sub>s</sub> max and other thread lengths l<sub>gf</sub> resp. l<sub>gp</sub> ≥ 4 ·d up to max, standard thread lengths are allowed

<sup>3)</sup> For 10 mm  $\leq$  l<sub>gf</sub> resp.,l<sub>gp</sub>  $\leq$  18 mm  $\rightarrow$  tolerance ±1,5 mm and for 18 mm < l<sub>gf</sub> resp. l<sub>gp</sub>  $\leq$  30 mm  $\rightarrow$  tolerance ±1,7 mm

#### fischer PowerFast II - Chipboard screw

Dimensions and Materials – Pan head with full- or partial thread



Screws with partial thread > 60 mm, I<sub>s</sub> with shank ribs

2) Other screw lengths with I<sub>s</sub> min ≤ I<sub>s</sub> ≤ I<sub>s</sub> max and other thread lengths I<sub>gf</sub> resp. I<sub>gp</sub> ≥ 4 d up to max, standard thread lengths are allowed

<sup>3)</sup> For 10 mm  $\leq l_{gf}$  resp.  $l_{gp} \leq 18$  mm  $\rightarrow$  tolerance ±1,5 mm and for 18 mm  $< l_{gf}$  resp.  $l_{gp} \leq 30$  mm  $\rightarrow$  tolerance ±1,7 mm

### fischer PowerFast II - Chipboard screw

Annex A4

Dimensions and Materials - Screw with clamping effect - partial/underhead thtread



Dimensions and Materials - Flange head with full thread

Annex A5



Screws with partial thread > 60 mm, I<sub>s</sub> with shank ribs

2) Other screw lengths with I<sub>s</sub> min ≤ I<sub>s</sub> ≤ I<sub>s</sub> max and other thread lengths I<sub>gf</sub> resp. I<sub>gp</sub> ≥ 4 d up to max, standard thread lengths are allowed

<sup>3)</sup> For 10 mm  $\leq$  l<sub>gf</sub> resp.,l<sub>gp</sub>  $\leq$  18 mm  $\rightarrow$  tolerance ±1,5 mm and for 18 mm < l<sub>gf</sub> resp. l<sub>gp</sub>  $\leq$  30 mm  $\rightarrow$  tolerance ±1,7 mm

### fischer PowerFast II - Chipboard screw

Dimensions and Materials - Step countersunk head with full- or partial thread



### fischer PowerFast II – Wood Construction screw

Annex A7

Dimensions and Materials - Countersunk head with full- or partial thread



### fischer PowerFast II – Wood Construction screw

Annex A8

Dimensions and Materials - Flange head with full- or partial thread



Screws with partial thread > 60 mm ls with shank ribs

<sup>2)</sup> Other screw lengths with  $I_s \min \le I_s \le I_s \max$  and other thread lengths  $I_{gf}$  resp.  $I_{gp} \ge 4 \cdot d$  up to max, standard thread lengths are allowed

Annex A9

Dimensions and Materials - Step Countersunk head with full- or partial thread



Screws with partial thread > 60 mm l<sub>s</sub> with shank ribs

2) Other screw lengths with I<sub>s</sub> min ≤ I<sub>s</sub> ≤ I<sub>s</sub> max and other thread lengths I<sub>gf</sub> resp. I<sub>gp</sub> ≥ 4·d up to max, standard thread lengths are allowed

## fischer PowerFast II – Wood Construction screw

Annex A10

Dimensions and Materials – Hexagon head with washer and full- or partial thread



Annex A11

Dimensions and Materials – Hexagon head with full- or partial thread





#### **Base Materials:**

The screws are used for connections in load bearing timber structures between members of softwood and hardwood shown in the Table B1.1 and in combination with steel plates.

»fischer PowerFast II« screws can also be used for fixing of thermal insulation on rafters and on vertical facades and ceilings (Annex E, F and Annex G).

"fischer PowerFast II" screws with a thread over the full length can also be used as tensile or compressive reinforcement perpendicular to the grain or as shear reinforcement. Furthermore "fischer PowerFast II" screws with a diameter ≥ 6 mm may also be used for fixing of thermal insulation on rafters and on vertical facades, see also Annex E and Annex G. Steel plates and wood-based panels which are not covered with explicit characteristic values (e.g. Table D12.2) in that ETA, shall only be fixed on the side of the screw head.

The minimum thickness of wood-bases panels should be at least  $1,2 \cdot d$  - except of approved wood-based panels acc. to Annex D5 and D6.

| Groups and Subgroups |                                                                      | Product                                    | Abbreviation | hEN, or ETA               |
|----------------------|----------------------------------------------------------------------|--------------------------------------------|--------------|---------------------------|
|                      | ber                                                                  | Strength graded structural softwood timber | ST-c         | EN 14081-1,<br>EN 1912    |
|                      | , timt                                                               | Strength graded structural hardwood        | ST-d         | EN 14081-1,               |
|                      | ural (<br>(ST)                                                       | timber                                     |              | EN 1912                   |
|                      | Structural timber<br>(ST)                                            | Structural finger jointed timber           | FST          | EN 15497                  |
|                      | 0)                                                                   | Glued structural timber                    | GST          | EN 14080                  |
| (SWB)                | mber                                                                 | Glued laminated timber made of softwoods   | GLT-c        | EN 14080                  |
| based                | Solid wood based (SWB)<br>Cross laminated timber<br>timber (CL) (PL) | Block glued glulam                         | BGLT         | EN 14080                  |
| id wood              |                                                                      | Glued laminated timber made of hardwoods   | GLT-d        | various ETAs              |
| Sol                  |                                                                      | Single layered solid wood panel            | SWP-P        | EN 13353                  |
|                      |                                                                      | Cross laminated timber                     | CLT          | various ETAs,<br>EN 16351 |
|                      | Cross I¢<br>timbe                                                    | Multi-layered solid wood panel             | SWP-C        | EN 13353                  |

#### Table B1.1: Materials for the intended use

fischer PowerFast II

Materials of the intended use

| Group                                | s and                         | Subgroups                                                                    | Product                                   | Abbreviation | hEN or ETA          |
|--------------------------------------|-------------------------------|------------------------------------------------------------------------------|-------------------------------------------|--------------|---------------------|
|                                      |                               |                                                                              | Softwood LVL with parallel veneers        | LVL-P-c      | EN 14374            |
|                                      |                               |                                                                              | Hardwood LVL with parallel veneers        | LVL-P-d      | various ETAs        |
|                                      | (LVL)                         | LVL-P                                                                        | Hardwood Glued LVL with parallel veneers  | GLVL-P-c     | various ETAs        |
| 3)                                   | umber (                       |                                                                              | Hardwood Glued LVL with parallel veneers  | GLVL-P-d     | various ETAs        |
| Veneer-based (VB)                    | Laminated Veneer Lumber (LVL) |                                                                              | Softwood LVL with crossband veneers       | LVL-C-c      | EN 14374            |
| eneer-ba                             | inated \                      | ပု                                                                           | Hardwood LVL with crossband veneers       | LVL-C-d      | various ETAs        |
| ×<br>×                               | Lam                           | Lamina<br>LVL-C                                                              | Softwood Glued LVL with crossband veneers | GLVL-C-c     | various ETAs        |
|                                      |                               |                                                                              | Softwood Glued LVL with crossband veneers | GLVL-C-d     | various ETAs        |
|                                      | >                             |                                                                              | Softwood Plywood                          | PLY-c        | EN 13986 and EN 636 |
|                                      |                               | ΡLΥ                                                                          | Hardwood Plywood                          | PLY-d        | EN 13986 and EN 636 |
| Strand<br>based<br>(SB)              |                               | based<br>(SB)                                                                | Oriented strand board                     | OSB          | EN 13986 and EN 300 |
|                                      | po                            | ed<br>B)                                                                     | Fibreboard, hard                          | НВ           | EN 622-2            |
| Woo<br>-fibr<br>base<br>(WF          |                               | Po     Image: Bis sector     Fibreboard, hard       A     Fibreboard, medium |                                           | MB           | EN 622-3            |
| Wood-<br>particle-<br>based<br>(WPB) |                               | particle-<br>based<br>(WPB)                                                  | Resinoid-bonded particle board            | RPB          | EN 13986 and EN 312 |
|                                      | un se                         | -based<br>(GYB)                                                              | Gypsum plasterboards                      | GPB          | EN 520              |
| Gypsum<br>-based<br>(GYB)            |                               | 5 4 O                                                                        | Gypsum fibreboards                        | GFB          | EN 15283-2          |

fischer PowerFast II

Annex B2

Materials of the intended use

**Design:** 

The design of the connections shall be based on the characteristic load-carrying capacities of the screws given in Annex C and Annex D.

The design capacities shall be derived from the characteristic capacities in accordance with the EN 1995-1-1 or an appropriate National Code. The screws are intended for the use of connections subjected to static or quasi-static loadings.

The zinc-coated screws are for the use in timber structures subjected to moisture defined by the service classes 1 and 2 according to EN 1995-1-1.

- Instructions from *fischerwerke GmbH & Co. KG* should be considered for installation.
- A minimum of two screws should be used for connections in load bearing timber structures.
- $\circ$  The overall length  $I_s$  of the screws, shall not be less than 20 mm and shall not be greater than 600 mm. Dimensions see Annex A.
- The ratio of inner thread diameter to outer thread diameter  $d_1/d$  ranges from 0,50 to 0,80.
- The thread pitch p (distance between two adjacent thread flanks) ranges from  $0.50 \cdot d$  to  $0.85 \cdot d$ . 0
- Earthquake design: No breaking is observed at a bending angle of  $\alpha \le (45/d^{0.7} + 20)^\circ$ .

Installation: The screws shall be driven into softwood and hardwood with a maximum characteristic density of 730 kg/m<sup>3</sup> without pre-drilling or after pre-drilling (see Table B3.1 and Table B4.1) with a diameter not larger than the inner threaded diameter  $d_1$  (Annex A).

**Table B3.1:** Recommended pre-drilling diameter

for soft- and hardwood

| Outer thread diameter | Bore-hole diameter [mm] |
|-----------------------|-------------------------|
| <i>d</i> [mm]         | Softwood and Hardwood   |
| 3,0                   | 2,0                     |
| 3,5                   | 2,0                     |
| 4,0                   | 2,5                     |
| 4,5                   | 2,5                     |
| 5,0                   | 3,0                     |
| 6,0                   | 4,0                     |
| 8,0                   | 5,0                     |
| 10,0                  | 6,0                     |
| 12,0                  | 7,0                     |

fischer PowerFast II

#### Installation:

Recommended values without pre-drilling for the maximum penetration length of the threaded part of »fischer PowerFast II« made of carbon steel in wood-based members like ash, beech and oak or LVL according to ETA-14/0354 (e.g. Baubuche) are shown in Table B4.1 below. There is no limitation in softwood or wood-based members made of softwood.

**Table B4.1:** Recommended penetration length

 without pre-drilling in hardwood

| Outer thread  | Maximum                    |  |
|---------------|----------------------------|--|
| diameter      | penetration length         |  |
| <i>d</i> [mm] | [mm]                       |  |
| 3,0           | 40                         |  |
| 3,5           | 45                         |  |
| 4,0           | 50                         |  |
| 4,5           | 60                         |  |
| 5,0           | 70                         |  |
| 6,0           | 70                         |  |
| 8,0           | 70                         |  |
| 10,0          | Pre-drilled application is |  |
| 12,0          | recommended                |  |
|               |                            |  |

When using screws with a countersunk or step countersunk the upper surface of the screw head must be flush with the surface of the timber part. Especially for timber parts with gross densities higher than 550 kg/m<sup>3</sup> it is recommended to use adequate counter-sinker to avoid breaking of the screw heads. For non-predrilled applications countersinking deeper is not permitted and should be avoided, because of damaging the surface and reduce the durability of the construction. Countersunk head screws made of carbon steel according to Annex A1, A2, A4 and A7 can be used together with washers according to Annex A13. Washers according to EN ISO 7094 can be used together with washers according to Annex A13.

»fischer PowerFast II – Chipboard screws« with a diameter between 4,5 mm and 6,0 mm and all diameters of »fischer PowerFast II – Wood Construction screws« can be driven in with standard screw drillers and with torque impact screw drivers too (e.g. fischer FSS 18V 400 BL or fischer FSS 18V 600). In combination with steel plates, torque controlled tools e.g. torque wrenches have to be used. For the use of screws in wood-based panels, like particle- and fibreboards, the screws have to be tightened carefully to ensure the characteristic load bearing capacity.

If on the head side metal plates are mounted, it has to be ensured that the diameter of the borehole of the steel plate has to be  $\leq d + 1$  [mm]. Effects of the borehole tolerances must be considered in the structural design (load-independent slippage).

In addition, care must be taken about the accuracy of fit between the screw head and the metal to avoid stress peaks, and thus also requires a maximum allowed deviation of the screw-in-direction of  $\pm 5^{\circ}$  (e. g. screw-in direction  $\varepsilon = 90^{\circ}$  to the surface means  $85^{\circ} \le \varepsilon \le 95^{\circ}$ ). For the definition of the angle  $\varepsilon$  referred to the screw axis and the structural element see Figure D2.1.

| fischer PowerFast II |
|----------------------|
|----------------------|

Annex B4

Specifications of the indented use – Installation

#### Minimum timber cross section, end- and edge distances - Notations

For structural timber members, minimum spacings and distances for screws  $d \le 8$  mm in predrilled holes are given as for nails in predrilled holes in EN 1995-1-1 clause 8.3.1.2 and table 8.2 and for screws  $d \ge 8$  mm in clause 8.5. Here, the outer thread diameter d must be considered. The requirements of the minimum thickness of the timber elements must be considered, see EN 1995-1-1 clause 8.3.1.2.

Spacing  $a_2$  may be reduced from 5·*d* to 2,5·*d*, if the condition  $a_1 \cdot a_2 \ge 25 \cdot d^2$  is fulfilled. For Douglas-fir members minimum spacings and distances parallel to the grain shall be increased by at least 50 %.

Minimum distances from the unloaded edge perpendicular to the grain may be reduced to  $3 \cdot d$  also for timber thickness  $t < 5 \cdot d$ , if the spacing parallel to the grain and the end distance is at least  $25 \cdot d$ .

| Table b5.1. Sha | pes of screw neads and applications with steel plates                                                   |                      |
|-----------------|---------------------------------------------------------------------------------------------------------|----------------------|
| Head shapes     | Description                                                                                             |                      |
| A.C.            | Screws with countersunk, raised countersunk according to Annex A1, A2, A4, A7                           |                      |
|                 | Screws with step countersunk according to<br>Annex A6 and A9                                            |                      |
|                 | Screws with pan head and flange head and hexagon head according to Annex A3, A5, A8, A10 and A11        |                      |
| METAL VE METAL  | Screws to fix steel plates on the head side according to Annex A1, A2, A3, A5, A6, A7, A8, A9, A10, A11 |                      |
|                 |                                                                                                         | Figures not to scale |

Table B5.1: Shapes of screw heads and applications with steel plates

Table B5.2: Minimum distances and spacings

Notations for Structural Timber (ST-c) and Glued Laminated Timber (GLT-c) made in softwoods

|                         | Spacing <i>a</i> <sub>1</sub> parallel to the grain of                                                                                                     |                                                                                         |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| <b>a</b> 1              | Solid Timber                                                                                                                                               |                                                                                         |
| <b>a</b> <sub>2</sub>   | Spacing <i>a</i> <sub>2</sub> perpendicular to the grain of Solid Timber                                                                                   | $\begin{array}{c} \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$ |
| <b>a</b> <sub>3,c</sub> | Distance $a_{3,c}$ from the centre of<br>the screw-part in timber to the<br>unloaded end grain of Solid<br>Timber, $90^{\circ} \le \alpha \le 270^{\circ}$ |                                                                                         |
| <b>a</b> <sub>3,t</sub> | Distance $a_{3,t}$ from the centre of<br>the screw-part in timber to the<br>loaded edge of Solid Timber<br>$-90^{\circ} \le \alpha \le 90^{\circ}$         |                                                                                         |
| <b>a</b> <sub>4,c</sub> | Distance $a_{4,c}$ from the centre of<br>the screw-part in timber to the<br>unloaded edge of Solid Timber<br>$180^{\circ} \leq \alpha \leq 360^{\circ}$    | F<br>α<br>α<br>a <sub>4,0</sub>                                                         |
| <b>a</b> <sub>4,t</sub> | Distance $a_{4,t}$ from the centre of<br>the screw-part in timber to the<br>loaded end grain of Solid Timber<br>$0^{\circ} < \alpha < 180^{\circ}$         |                                                                                         |
|                         |                                                                                                                                                            | Figures not to scale                                                                    |
|                         | fischer PowerFas                                                                                                                                           | t II                                                                                    |

Specifications of the indented use – Minimum timber cross sections, end- and edge distances – notations for ST and PL Annex B5

## Minimum timber cross section, end- and edge distances Materials: Solid Timber (ST-c, FST-c, and GST-c) and Glued Laminated Timber (GLT-c, BGLT-c)

#### Laterally loaded Screws

Minimum distances and spacings for laterally loaded »fischer PowerFast II« screws in non-predrilled holes in members of Solid Timber (ST-c, FST-c, GST-c), Glued Laminated Timber (GLT-c, BGLT-c) or similar glued products with a minimum thickness  $t = 12 \cdot d$  and a minimum width of  $8 \cdot d$  or 60 mm, whichever is greater up to a gross density of 480 kg/m<sup>3</sup>, are recommended to choose with the help of Table B6.1. For all other applications (predrilled applications, dimensions of the timber elements and gross densities higher than 480 kg/m<sup>3</sup>) the regulations of chapter 8.3.1 for screws with  $d \le 8$  mm and chapter 8.5.1 for screws with 8 mm <  $d \le 12$  mm in EN 1995-1-1 have to be considered.

**Table B6.1:** Laterally loaded screws: Minimum end- and edge distances for Solid Timber and Glued

 Laminated Timber products with a maximum gross density of 480 kg/m³ for non-predrilled applications

| Head shapes      | Solid Timber and Glued Laminated Timber<br>(ST-c, FST-c, GST-c, GLT-c, BGLT-c) |           |                         |                                  |             |                                  |  |  |  |
|------------------|--------------------------------------------------------------------------------|-----------|-------------------------|----------------------------------|-------------|----------------------------------|--|--|--|
| (see Table B5.1) | Minimum spacings and distances                                                 |           |                         |                                  |             |                                  |  |  |  |
|                  | a₁<br>5·(1+ cosα )·d                                                           | a₂<br>5∙d | a <sub>3,c</sub><br>7∙d | a <sub>3,t</sub><br>(7+5·cosα)·d | a₄,₅<br>5∙d | a <sub>4,t</sub><br>(5+2·sinα)∙d |  |  |  |
|                  | 5·(1+ cos <i>α</i>  )· <i>d</i>                                                | 5∙d       | 7∙d                     | (5+5·cos <i>α</i> )∙ <b>d</b>    | 5∙d         | (5+2·sin <i>α</i> )∙ <b>d</b>    |  |  |  |
| METAL A METAL    | 3,5·(1+ cosα )·d                                                               | 3,5∙d     | 7∙d                     | (5+5·cos <i>α</i> )∙d            | 5∙d         | (5+2·sinα)·d                     |  |  |  |
|                  |                                                                                | •         |                         |                                  |             | Figures not to scale             |  |  |  |

### **Axially loaded screws**

Minimum distances and spacings for exclusively axially loaded »fischer PowerFast II« screws, in nonpredrilled holes in members of Solid Timber (ST-c, FST-c and GST-c), Glued Laminated Timber (GLT-c) or similar glued products with a minimum thickness  $t = 10 \cdot d$  and a minimum width of  $8 \cdot d$  or 60 mm, whichever is the greater, may be taken as given in Table B6.2.

**Table B6.2:** Axially loaded screws: Minimum end- and edge distances for Solid Timber and Glued Laminated Timber products, with a maximum gross density of 480 kg/m<sup>3</sup> for non-predrilled applications.

| Head shapes<br>and applications                                                                                                                             | Solid Timber and Glued Laminated Timber<br>(ST-c, FST-c, GST-c, GLT-c, BGLT-c)<br>Minimum spacings and distances |                                        |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|--|--|--|--|
| (see Table B5.1)                                                                                                                                            | <b>a</b> 1                                                                                                       | <b>a</b> <sub>2.CG</sub> <sup>1)</sup> |  |  |  |  |  |
| Image: State of the centre of gravity of the penetration length of the threaded part of the screw in the timber element according to EN 1995-1-1, Table 8.6 |                                                                                                                  |                                        |  |  |  |  |  |
| fischer PowerFast II                                                                                                                                        |                                                                                                                  |                                        |  |  |  |  |  |
| Specifica<br>Minimum distances                                                                                                                              | — Annex B6                                                                                                       |                                        |  |  |  |  |  |



## Minimum distances and spacings Material: Cross Laminated Timber (CLT)

## Laterally and axially loaded screws:

Unless specified otherwise in the technical specification (ETA or hEN) of Cross Laminated Timber, minimum distances and spacings for screws in the plane surface of Cross Laminated Timber members with a minimum thickness  $t = 10 \cdot d$  may be taken as shown in Table B8.1 and Table B8.2.

**Table B8.1:** Minimum end- and edge distances for Cross Laminated Timber in the plane surface

 Cross Laminated Timber, Screws in the plane surface (CLT)



Figures not to scale

Unless specified otherwise in the technical specification (ETA or hEN) of Cross Laminated Timber, minimum distances and spacing for screws in the edge surface of Cross Laminated Timber members with a minimum thickness  $t = 10 \cdot d$  and a minimum penetration depth perpendicular to the edge surface of  $10 \cdot d$  may be considered.

## **Table B8.2:** Minimum end- and edge distances for Cross Laminated Timber in the edge surface Cross Laminated Timber, Screws in the edge surface

| Cross Laminated Timber, Screws in the edge surface |                  |        |           |              |         |                   |  |  |
|----------------------------------------------------|------------------|--------|-----------|--------------|---------|-------------------|--|--|
| edge surface                                       |                  |        |           |              |         |                   |  |  |
| Head shapes                                        |                  | Minimu | ım spacin | as and dis   | stances |                   |  |  |
| and applications<br>(see Table B5.1)               | and applications |        |           |              |         |                   |  |  |
|                                                    | 10· <i>d</i>     | 3·d    | 7∙d       | 12· <i>d</i> | 5∙d     | 5∙d               |  |  |
| METAL METAL                                        | 7∙d              | 3·d    | 7·d       | 12·d         | 5∙d     | 5∙d               |  |  |
|                                                    |                  |        |           |              | Figu    | ires not to scale |  |  |
| fischer PowerFast II                               |                  |        |           |              |         |                   |  |  |
| Specifications of the indented use –               |                  |        |           |              |         |                   |  |  |

Minimum distances for axially and laterally loaded screws

## Performance of the product and references to the methods used for its assessment

#### Performance of the PowerFast II screws itself (single product)

**Table C1.1:** Characteristic values of the load-carrying capacities of fischer PowerFast II - Chipboard screws

| Outer thread diameter                                                                                   | d                                                        | [mm]                      | 3,0                               | 3,5 | 4,0 | 4,5 | 5,0 | 6,0  |  |  |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------|-----------------------------------|-----|-----|-----|-----|------|--|--|
| Characteristic strength parameters                                                                      |                                                          |                           |                                   |     |     |     |     |      |  |  |
| Tensile strength                                                                                        | <i>f</i> tens,k                                          | [kN]                      | 3,2                               | 4,1 | 5,2 | 6,3 | 8,9 | 13,1 |  |  |
| Torsional strength                                                                                      | <b>f</b> tor,k                                           | [Nm]                      | 1,5 2,0 3,0 4,2 6,0 10,0          |     |     |     |     |      |  |  |
| Yield moment                                                                                            | <i>M</i> y,Rk                                            | [Nmm]                     | n] 1654 2489 3546 4844 6405 10384 |     |     |     |     |      |  |  |
| Yield strength                                                                                          | <b>f</b> y,k                                             | [N/mm <sup>2</sup> ] 1050 |                                   |     |     |     |     |      |  |  |
| Characteristic stiffness parameters                                                                     |                                                          |                           |                                   |     |     |     |     |      |  |  |
| Modulus of elasticity                                                                                   | Es                                                       | [N/mm <sup>2</sup> ]      | mm <sup>2</sup> ] 210.000         |     |     |     |     |      |  |  |
| Assessed performances                                                                                   |                                                          |                           |                                   |     |     |     |     |      |  |  |
| Bending angle         [°]         No breaking has been observed at a bending angle of                   |                                                          |                           |                                   |     |     |     |     |      |  |  |
| $\alpha \le 45^{\circ}/d^{0.7}+20^{\circ}$                                                              |                                                          |                           |                                   |     |     |     |     |      |  |  |
| Safety factor insertion moment [-] Ratio of the characteristic torsional strength to the mean insertion |                                                          |                           |                                   |     |     |     |     |      |  |  |
|                                                                                                         | moment: $f_{\text{tor,k}} / R_{\text{tor,mean}} \ge 1,5$ |                           |                                   |     |     |     |     |      |  |  |
| Note: Reference density of the timber 480 kg/m <sup>3</sup>                                             |                                                          |                           |                                   |     |     |     |     |      |  |  |

## **Table C1.2:** Characteristic values of the load-carrying capacities of fischer PowerFast II – Wood Construction screws

| Outer thread<br>diameter                                                                                          | d                          | [mm]                                                                                                                                                                             | 8,0     | 10,0  | 12,0  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|-------|--|--|--|
| Characteristic strength par                                                                                       | rameters                   |                                                                                                                                                                                  |         |       |       |  |  |  |
| Tensile strength                                                                                                  | <b>f</b> <sub>tens,k</sub> | [kN]                                                                                                                                                                             | 23,0    | 31,0  | 42,0  |  |  |  |
| Torsional strength                                                                                                | <b>f</b> tor,k             | [Nm]                                                                                                                                                                             | 28,0    | 42,0  | 64,0  |  |  |  |
| Yield moment                                                                                                      | <b>M</b> y,Rk              | [Nmm]                                                                                                                                                                            | 22200   | 37400 | 59900 |  |  |  |
| Yield strength                                                                                                    | <b>f</b> y,k               | [N/mm <sup>2</sup> ]                                                                                                                                                             | 975     |       |       |  |  |  |
| Characteristic stiffness parameters                                                                               |                            |                                                                                                                                                                                  |         |       |       |  |  |  |
| Modulus of elasticity                                                                                             | Es                         | [N/mm <sup>2</sup> ]                                                                                                                                                             | 210.000 |       |       |  |  |  |
| Assessed performances                                                                                             |                            |                                                                                                                                                                                  |         |       |       |  |  |  |
| Bending angle[°]No breaking has been observed at a bending angle of<br>$\alpha \le 45^{\circ}/d^{0.7}+20^{\circ}$ |                            |                                                                                                                                                                                  |         |       |       |  |  |  |
| Safety factor insertion i                                                                                         | [-]                        | Ratio of the characteristic torsional strength to the mean insertio<br>moment: $f_{tor,k} / R_{tor,mean} \ge 1,5$<br>Note: Reference density of the timber 480 kg/m <sup>3</sup> |         |       | C     |  |  |  |

Note: The tear-off capacity of the screw head is greater than the tensile capacity of the screw

fischer PowerFast II

Characteristic values of the screws

## **1** Mechanical Resistance and Stability

The load-carrying capacities for the »fischer PowerFast II« screws are applicable to the wood-based materials mentioned in Annex B, even though the term *»timber*« has been used in the following. European Technical Assessments for structural members or wood-based panels must be considered if applicable.

The characteristic lateral load-carrying capacities and the characteristic axial withdrawal capacities of »fischer PowerFast II« screws should be used for designs in accordance with EN 1995-1-1 or an appropriate valid national code.

ETA's for structural members or wood-based panels must be considered where applicable.

For screws arranged under an angle between screw axis and grain-direction  $\varepsilon \le 15^{\circ}$  (see Figure D2.1), the threaded penetration length (inclusive the tip of the screw) has to fulfill equation (1).

$$l_{ef} = \min \begin{cases} \frac{4 \cdot d}{\sin \varepsilon} \\ 20 \cdot d \end{cases}$$
(1)

For screws arranged under an angle between screw and grain-direction  $15^{\circ} < \varepsilon \le 90^{\circ}$  the minimum threaded penetration length must be  $I_{ef} \ge 4 \cdot d$  (see also Figure D2.1). For the fixing of rafters or similar building parts, the point side penetration length must be at least 40 mm (i.e.  $I_{ef} \ge 40$  mm).

Reductions in the cross-sectional area caused by »fischer PowerFast II« screws shall be considered in accordance to the EN 1995-1-1, section 5.2.

### fischer PowerFast II

Mechanical Resistance and Stability

## 1.1 Lateral load-carrying capacity *F*<sub>v,Rk</sub>

The characteristic lateral load-carrying capacity of »fischer PowerFast II« screws shall be calculated according to EN 1995-1-1. The contribution of the rope effect may be considered, if only lateral loads (no axial loads) are acting on the screws. For the calculation of the load-carrying capacity, the following parameters should be taken into account. Figure D2.1 shows the definition of the necessary angles which consider the angle between load and grain-direction  $\alpha$ , the angle between the surface of wide face of the structural element and the screw axis  $\beta$  and the angle between the screw axis and the grain-direction  $\varepsilon$ .



#### 1.1.1 Embedment strength $f_{h,\varepsilon,k}$ for the use in Structural Timber (ST-c/d, FST-c/d and GST-c/d, BGLT) and Parallel Laminated Timber (GLT-c)

The embedment strength for »fischer PowerFast II« screws in non-predrilled holes arranged at an angle between screw axis and grain-direction,  $0^{\circ} \le \varepsilon \le 90^{\circ}$  for structural timber elements with  $\rho_{k} \le 730 \text{ kg/m}^{3}$  can be calculated with the help of equation (2) and for predrilled applications with the help of equation (3)

$$f_{h,\varepsilon,k} = \frac{0,019 \cdot \rho_k^{1,24} \cdot d^{-0,3}}{2,5 \cdot \cos^2 \varepsilon + \sin^2 \varepsilon}$$
(2)

$$f_{h,\varepsilon,k} = \frac{0.082 \cdot \rho_k \cdot (1 - 0.01 \cdot d)}{2.5 \cdot \cos^2 \varepsilon + \sin^2 \varepsilon}$$
(3)

Note: Screws parallel to the end-grain-direction stressed perpendicular to the screw axis ( $\varepsilon = 0^{\circ}$ ) are only allowed for short-time loads.

fischer PowerFast II

Lateral load-carrying capacity

### 1.1.2 Embedment strength $f_{h,k}$ for the use in Cross Laminated Timber (CLT-c)

If there are no other technical specification (ETA) for Cross Laminated Timber (CLT-c), the embedment strength for screws can be calculated as stated below. The following specifications are only applicable for screws with a diameter d of at least 6 mm, possible influences of gaps between the single lamellas have to be considered.



Figure D3.1: Notations CLT-elements (figure not to scale)

#### Screws in the plane surface

The embedment strength for screws in the plane surface of CLT-elements should be assumed as for Solid Timber according to equation (2), based on the characteristic density of the outer layer.

### Screws in the edge (narrow) side

The embedment strength for screws in the narrow side of CLT-elements should be assumed according to equation (4).

$$f_{hk} = 20 \cdot d^{-0.5} \tag{4}$$

## 1.1.3 Embedment strength $f_{h,\beta,\epsilon,k}$ for the use in Laminated Veneer Lumber in softwood (LVL-c)

The embedment strength for »fischer PowerFast II« screws arranged at an angle between screw axis and grain-direction  $\varepsilon$  and an angle between screw axis of wide surface of the LVL  $\beta$  for  $d \le 12$  mm can be calculated with equation (5) for non-predrilled holes

$$f_{h,\beta,\varepsilon,k} = \frac{0,082 \cdot \rho_k \cdot d^{-0,3}}{(\sin^2 \beta + k_2 \cdot \cos^2 \beta) \cdot (\sin^2 \varepsilon + 2,5 \cdot \cos^2 \varepsilon)}$$
(5)

and for predrilled holes

$$f_{h,\beta,\varepsilon,k} = \frac{0,082 \cdot \rho_k \cdot (1 - 0,01 \cdot d)}{(\sin^2 \beta + k_2 \cdot \cos^2 \beta) \cdot (\sin^2 \varepsilon + 2,5 \cdot \cos^2 \varepsilon)}$$
(6)

with

$$k_2 = \begin{cases} 1 & \text{for LVL-P} \\ \min \begin{cases} d/(d-2) \\ 3 & \text{for LVL-C} \end{cases}$$

(7)

fischer PowerFast II
Annex D3
Lateral load-carrying capacity

## 1.1.4 Embedment strength $f_{h,\alpha,\beta,k}$ for use in Laminated Veneer Lumber in hardwood LVL-d according to (ETA-14/0354)

The embedment strength for »fischer PowerFast II« screws arranged at an angle between load and grain-direction,  $0^{\circ} \le \alpha \le 90^{\circ}$  can be calculated with the help of equation (8). Screws with d > 8 mm should be predrilled.

$$f_{h,\alpha,\beta,k} = \frac{f_{h,k}}{(k_{90} \cdot \sin^2 \alpha + \cos^2 \alpha) \cdot (\sin^2 \beta + k_1 \cdot \cos^2 \beta)}$$
(8)

with

$$k_{90} = 0,5 + 0,024 \cdot d$$

$$k_{1} = \begin{cases} 1,2 & \text{for LVL-P in hardwood} \\ \min \begin{cases} d/(d-2) \\ 3 & \text{for LVL-C in hardwood} \end{cases}$$

#### Where

*d* Outer diameter of the screw [mm]

- $f_{h,\alpha,\beta,k}$  Characteristic embedment strength for screws  $d \le 12$  mm in LVL-d [N/mm<sup>2</sup>]
- $f_{h,\beta,\epsilon,k}$  Characteristic embedment strength for screws  $d \le 12$  mm in LVL-c [N/mm<sup>2</sup>]
- $f_{h,\epsilon,k}$  Characteristic embedment strength for screws  $d \le 12 \text{ mm}$  in ST-c, FST, GLT, BGLT [N/mm<sup>2</sup>]

 $f_{h,k}$  Characteristic value of the embedment strength according to Table D5.1 [N/mm<sup>2</sup>]

*k*<sub>90</sub> Factor to consider influences of the diameter [-]

 $k_{1,}k_{2,}k_{3}$  Factors to consider influences of the diameter and material [-]

- $\alpha$  Angle between grain-direction and acting load [°]
- $\beta$  Angle between screw axis and surface [°]
- ε Angle between screw axis and grain-direction [°]
- $\rho_{\rm k}$  Characteristic gross density of the wood-based element [kg/m<sup>3</sup>]

#### fischer PowerFast II

Lateral load-carrying capacity

(9)
#### 1.1.5 Embedment strength $f_{h,k}$ for the use in Oriented Strand Boards (OSB),

**Plywood (PLY), Fibreboards (HB, MB, SB), Particleboards (RPB) in the plane surface** The embedment strength for »fischer PowerFast II« screws in non-predrilled holes if no other regulations are given, arranged at an angle  $\beta = 90^{\circ}$  to the plane surface can be calculated with the help of Table D5.1.



Figure D5.1: Screw arrangement in the plane surface of WBP (figure not to scale)

**Table D5.1:** Characteristic values of the embedment strength in the plane surface of OSB, HB, MB, SB, PLY and RPB

| Outer thread<br>diameter [mm]                                                       | d                         | 3,5 mm – 6,0 mm                                                         |       |
|-------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------|-------|
| Material                                                                            |                           | Embedment parameters in the plane surface [N/mm <sup>2</sup> ]          |       |
| OSB<br><i>t</i> > 5 mm (EN 300)                                                     | <i>f</i> <sub>h,k</sub> = | 48·d <sup>-0,7</sup> ·t <sup>0,1</sup>                                  |       |
| EGGER OSB 4 TOP<br>predrilled<br><i>t</i> > 10 mm, (EN 13986)                       | f <sub>h,k</sub> =        | 50·d <sup>-0,6</sup> t <sup>0,2</sup>                                   |       |
| EGGER OSB 4 TOP<br>without pre-drilling<br><i>t</i> >10 mm, (EN 13986)              | <i>f</i> <sub>h,k</sub> = | 65· <i>d</i> <sup>-0,7</sup> · <i>t</i> <sup>0,1</sup>                  |       |
| Plywood PLY<br><i>t</i> > 4 mm (EN 314-2)                                           | <i>f</i> <sub>h,k</sub> = | 65· <i>d</i> <sup>-0,7</sup> · <i>t</i> <sup>0,1</sup>                  |       |
| Fibreboard<br>hard (HB)<br><i>t</i> > 3 mm (EN 622-2)                               | <i>f</i> <sub>h,k</sub> = | 30· <i>d</i> <sup>-0,3</sup> · <i>t</i> <sup>0,6</sup>                  |       |
| Fibreboard<br>medium (MB)<br><i>t</i> > 3 mm (EN 622-3)                             | <i>f</i> <sub>h,k</sub> = | 28· <i>d</i> <sup>-0,6</sup> · <i>t</i> <sup>0,6</sup>                  |       |
| Fibreboard<br>soft (SB)<br>150 ≤ <i>ρ</i> κ ≤ 300 kg/m³<br>18 mm ≤ <i>t</i> ≤ 60 mm | f <sub>h,k</sub> =        | $4 \cdot 10^{-4} \cdot t \cdot \rho_k^{1,2}$                            |       |
| Fibreboard<br>soft (SB)<br><i>p</i> к < 150 kg/m³                                   | <i>f</i> <sub>h,k</sub> = | <b>15·10<sup>-5</sup>·d<sup>-075</sup>·</b> ρ <sub>k</sub> <sup>2</sup> |       |
| Particleboards<br>(RPB)<br><i>t</i> > 5 mm (EN 312)                                 | f <sub>h,k</sub> =        | 50·d <sup>-0,6</sup> ·t <sup>0,2</sup>                                  |       |
| Gypsum plasterboard<br>t ≥ 9 mm<br>(EN 520)                                         | f <sub>h,k</sub> =        | <i>3,9</i> · <i>d</i> <sup>-0,6</sup> · <i>t</i> <sup>0,7</sup>         |       |
| Gypsum board with<br>fibrous reinforcement<br>t ≥ 9 mm<br>(EN 15283-2)              | <i>f</i> <sub>h,k</sub> = | 7,8·d <sup>-0,2</sup> ·t <sup>0,7</sup>                                 |       |
|                                                                                     | fi                        | ischer PowerFast II                                                     |       |
|                                                                                     | Later                     | al load-carrying capacity                                               | Annex |

#### **1.1.6** Embedment strength $f_{h,k}$ for the use in Oriented Strand Boards (OSB),

**Plywood (PLY), Fibreboards (HB, MB, SB), Particleboards (RPB) in the edge surface** The embedment strength for »fischer PowerFast II« screws, if no other regulations are given, arranged at an angle  $\beta = 0^{\circ}$  to the plane surface can be calculated with the help of Table D6.1.



Figure D6.1: Screw arrangement in the narrow surface of WBP (figure not to scale)

| Table D6.1: Characteristic values of the embedment strength in the edge surface of OSB |                           |                                                                |         |  |  |  |
|----------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------|---------|--|--|--|
| Outer thread                                                                           | d                         | ≤ 5,0 mm                                                       |         |  |  |  |
| diameter [mm]<br>Material                                                              |                           | Embedment parameters in the edge surface [N/mm <sup>2</sup> ]  |         |  |  |  |
| EGGER OSB 4 TOP,                                                                       |                           | Embeument parameters in the euge surface [w/mm]                |         |  |  |  |
| predrilled                                                                             |                           |                                                                |         |  |  |  |
| <i>t</i> >10 mm                                                                        | <i>f</i> <sub>h,k</sub> = | 50· <i>d</i> <sup>-0,6</sup> <i>t</i> <sup>0,2</sup>           |         |  |  |  |
| Load parallel to plane                                                                 | /П,К                      |                                                                |         |  |  |  |
| (EN 13986)                                                                             |                           |                                                                |         |  |  |  |
| EGGER OSB 4 TOP,                                                                       |                           |                                                                |         |  |  |  |
| without predrilling                                                                    |                           |                                                                |         |  |  |  |
| t > 10  mm                                                                             | <i>f</i> <sub>h,k</sub> = | 65· <i>d</i> <sup>-0,7</sup> · <i>t</i> <sup>0,1</sup>         |         |  |  |  |
| Load prallel to plane                                                                  | л,к                       |                                                                |         |  |  |  |
| (EN 13986)                                                                             |                           |                                                                |         |  |  |  |
| EGGER OSB 4 TOP,                                                                       |                           |                                                                |         |  |  |  |
| predrilled                                                                             |                           |                                                                |         |  |  |  |
| t > 10  mm                                                                             | <i>f</i> <sub>h,k</sub> = | 65·d <sup>-0,7</sup> ·t <sup>0,1</sup>                         |         |  |  |  |
| Load normal to plane                                                                   | 711,K                     |                                                                |         |  |  |  |
| (EN 13986)                                                                             |                           |                                                                |         |  |  |  |
| EGGER OSB 4 TOP,                                                                       |                           |                                                                |         |  |  |  |
| without predrilling                                                                    |                           |                                                                |         |  |  |  |
| <i>t</i> >10 mm                                                                        | <i>f</i> <sub>h,k</sub> = | <b>30</b> • <i>d</i> <sup>-0,3</sup> • <i>t</i> <sup>0,6</sup> |         |  |  |  |
| Load normal to plane                                                                   |                           |                                                                |         |  |  |  |
| (EN 13986)                                                                             |                           |                                                                |         |  |  |  |
|                                                                                        |                           |                                                                |         |  |  |  |
|                                                                                        | f                         | ischer PowerFast II                                            | Annex D |  |  |  |
|                                                                                        | Late                      | ral load-carrying capacity                                     |         |  |  |  |

**Table D6.1:** Characteristic values of the embedment strength in the edge surface of OSB

#### 1.1.7 Embedment strength $f_{h,k}$ for the use in combination with predrilled steel plates

The characteristic embedment strength of »fischer PowerFast II« screws in steel plates can be taken like following into account.

$$f_{h,k} = k_{pl} \cdot 600 \, [\text{N/mm}^2]$$

with

 $k_{\rm pl}$ =1,0 for inner steel plates

 $k_{\rm pl}$ =0,5 for the ratio  $t / d \le 0.5$  for outer steel plates

 $k_{pl}=1,0$  for the ratio t / d > 1,0 for outer steel plates

Intermediate values should be linearly interpolated

Note: The 600 N/mm<sup>2</sup> should be used for any steel and may be different for other materials. The metal plate should be verified in accordance to the corresponding Eurocode (e.g. EN 1993-1-1, EN 1993-1-8, EN 1999-1-1).

# 1.1.8 Effective number of screws each row $n_{\rm ef}$

Splitting along the grain of a row of PowerFast II screws, should be considered by the effective number of fasteners  $n_{\rm ef}$ .

For laterally loaded screws with d < 12 mm, the following rules for multiple fastener connections should be applied.

$$n_{ef} = n^{k_{ef}} \tag{11}$$

(10)

**Table D7.1:** Values for *k*<sub>ef</sub> for SL, PL, CL and in the plane surface of LVL and GLVL

| Distance                                                                                                                                                                                                         | Materials                    |                                     | <i>k</i> <sub>ef</sub>                                 |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|--------------------------------------------------------|--|--|--|
| Distance                                                                                                                                                                                                         | IVIALEITAIS                  | non-predrilled                      | predrilled                                             |  |  |  |
| <i>a</i> ₁ ≥ 14· <i>d</i>                                                                                                                                                                                        | SL, PL, CL and               | 1,0                                 | 1,0                                                    |  |  |  |
| <i>a</i> ₁ ≥ 10· <i>d</i>                                                                                                                                                                                        | in the plane surface         | 0,85                                | 0,85                                                   |  |  |  |
| <i>a</i> 1 ≥ 7· <i>d</i>                                                                                                                                                                                         | of LVL and GLVL              | 0,7                                 | 0,7                                                    |  |  |  |
| <i>a</i> ₁ ≥ 4· <i>d</i>                                                                                                                                                                                         |                              | -                                   | 0,5                                                    |  |  |  |
| For intermedia                                                                                                                                                                                                   | te spacings, linear interpol | ation of <i>k</i> ef may be applied |                                                        |  |  |  |
| For intermediate spacings, linear interpolation of $k_{ef}$ may be applied-in the narrow surface<br>of LVL and GLVL $k_{ef} = \min \begin{cases} 1-0, 03 \cdot \left(20 - \frac{a_1}{d}\right) \\ 1 \end{cases}$ |                              |                                     |                                                        |  |  |  |
| -                                                                                                                                                                                                                |                              |                                     | $0,03 \cdot \left( \frac{20 - \frac{1}{d}}{d} \right)$ |  |  |  |

For intermediate spacings, linear interpolation of  $k_{ef}$  may be applied

For fischer PowerFast II screws with  $d \le 8$  mm staggered at least by 1·*d* without predrilling the spacing  $a_1$  may be doubled for the determination of  $n_{ef}$ .



Figure D7.1: Staggered arrangement of the screws parallel to the grain direction (figure not to scale)

The effective number of fasteners loaded perpendicular to grain should be taken as  $n_{ef} = n_{90}$ .

| fischer PowerFast II                                     | Annex D7 |
|----------------------------------------------------------|----------|
| Lateral load-carrying capacity – effective number of sci |          |

For laterally loaded screws with  $d \ge 12$  mm, the following rules for multiple fastener connections should be applied.

$$n_{ef} = \min \begin{cases} n \\ n^{0.9} \cdot \sqrt[4]{\frac{a_1}{13 \cdot d}} & \text{in SL, PL and CL} \end{cases}$$
(12)

$$n_{ef} = \min \begin{cases} n \\ n^{0.9} \cdot \sqrt[4]{\frac{t \cdot a}{50 \cdot d^2}} & \text{in LVL ang GLVL} \end{cases}$$
(13)

with

$$a = \begin{cases} a_3 & \text{when n=1} \\ \min \begin{cases} a_1 & \text{when n } \ge 2 \\ a_{3,t} & \text{when n } \ge 2 \end{cases}$$

$$t = \begin{cases} \min \begin{cases} t_1 & \text{for single shear connection} \\ t_2 & \text{for single shear connection} \\ \min \begin{cases} 2 \cdot t_1 & \text{for double shear connection} \\ t_{ms} & \text{for double shear connection} \end{cases}$$
(15)

#### Where

| $n_0$       | Number of fasteners parallel to grain |  |
|-------------|---------------------------------------|--|
| <b>a</b> 1  | Spacing parallel to grain             |  |
| <b>a</b> 3t | Loaded end distance parallel to grain |  |

- *d* Nominal Diamter of fischer PowerFast II screws
- $t_1$  and  $t_2$  thicknesses of the outer timber members
- $t_{ms}$  thickness of the inner member of double shear connections or the smallest thickness of the inner member of multiple shear plane connections

#### fischer PowerFast II

Annex D8

Lateral load-carrying capacity – effective number of screws

#### 1.2 Axial resistance of the screw under tension Fax,t,Rd

The design axial tensile resistance  $F_{ax,t,Rd}$  for a group of axially loaded screws is limited by the head pull-through parameter, the withdrawal capacity and the tensile capacity of the screw itself and should be considered as following.

$$F_{ax,t,Rd} = \min \begin{cases} n_{ef} \cdot F_{ax,t,Rd,1} \\ n \cdot F_{ax,t,Rd,2} \end{cases}$$
(16)

with

$$F_{ax,t,Rd,1} = \frac{k_{mod}}{\gamma_M} \cdot \min \begin{cases} \text{Headside: } \max\{F_{head,Rk}; F_{ax,\alpha,Rk}\} \\ \text{Tipside: } F_{ax,\alpha,Rk} \end{cases}$$
(17)

and

$$F_{ax,t,Rd,2} = \frac{f_{tens,k}}{\gamma_{M,2}}$$
(18)

Where

| <i>k</i> <sub>mod</sub> Modification factor see also EN 1995-1-1 [-] |  |
|----------------------------------------------------------------------|--|
|----------------------------------------------------------------------|--|

*n* Number of screws in a connection [-]

- *n*<sub>ef</sub> Effective number of screws in a connection [-]
- $\gamma_{M}$  Partial factor for the screw, see EN 1995-1-1; *Note: Recommended value*  $\gamma_{M}$ =1,30
- *F*<sub>head,Rk</sub> Characteristic head pull-through resistance in according to see Annex D16 [N]
- *F*<sub>ax,α,Rk</sub> Characteristic withdrawal resistance according Annex D11, D12, D13, D14 [N]
- *F*<sub>ax,t,Rd</sub> Design withdrawal resistance [N]
- *F*<sub>ax,t,Rd,1</sub> Design withdrawal resistance on the timber side [N]
- *F*<sub>ax,t,Rd,2</sub> Design tension strength of the screw itself [N]
- $f_{\text{tens},k}$  Characteristic tensile strength of the »fischer PowerFast II« screws, see Table C1.1 and C1.2 [N], *Note: Values in Table C1.1 and C1.2 are given in [kN]*  $\gamma_{M,2}$  Partial factor for resistance of cross-sections of a metal fastener in tension to fracture,
  - see EN 1993-1-8; Note: Recommended value  $\gamma_{M,2}$ =1,25

# 1.2.1 Withdrawal capacity $F_{ax,\alpha,Rk}$ for use in Structural Timber (ST-c, FST and GST) and Parallel Laminated Timber (GLT-c)

In Structural Timber (ST-c) and Glued Laminated Timber of softwood (GLT-c), the characteristic withdrawal capacities of »fischer PowerFast II« screws, with an angle of  $0^{\circ} \le \varepsilon \le 90^{\circ}$  for self-tapping screws shall be calculated according to equation (19) or (20).

$$F_{ax,\alpha,Rk} = k_{ax} \cdot f_{ax,k} \cdot d \cdot l_{ef} \cdot \left(\frac{\rho_k}{350}\right)^{0.8}$$
(19)

$$F_{ax,\alpha,Rk} = k_{ax} \cdot f_{ax,k} \cdot d \cdot l_g \cdot \left(\frac{\rho_k}{350}\right)^{0.8}$$
(20)

with

$$k_{ax} = \min \begin{cases} 0.3 + (0.7 \cdot \varepsilon) / 45^{\circ} \\ 1.00 \end{cases}$$
(21)

fischer PowerFast II

Axial resistance of the screw under tension

Annex D9

For screws arranged under an angle between screw axis and grain-direction  $\varepsilon \le 15^{\circ}$  (see Figure D2.1), the threaded penetration length (inclusive the tip of the screw) has to fulfil equation (22).

$$l_{ef} = \min \begin{cases} \frac{4 \cdot d}{\sin \varepsilon} \\ 20 \cdot d \end{cases}$$
(22)

For screws arranged under an angle between screw and grain-direction  $15^{\circ} < \varepsilon \le 90^{\circ}$  the minimum threaded penetration length must be  $I_{ef} \ge 4 \cdot d$ . For the fixing of rafters or similar building parts, the point side penetration length must be at least 40 mm (i.e.  $I_{ef} \ge 40$  mm).

#### 1.2.2 Withdrawal capacity $F_{ax,\alpha,Rk}$ for use in Structural Timber (ST-d, GLT-d) and Laminated Veneer Lumber (LVL-d) according to ETA-14/0354

The characteristic withdrawal capacity of »fischer PowerFast II« screws in Structural Timber (ST-d, GLT-d) and Laminated Veneer Lumber in hardwood (LVL-d) according to ETA-14/0354 with an angle of  $0^{\circ} \le \varepsilon \le 90^{\circ}$  shall be calculated according to equation (23) or (24).

$$F_{ax,\alpha,Rk} = k_{ax} \cdot f_{ax,k} \cdot d \cdot l_{ef} \cdot \left(\frac{\rho_k}{730}\right)^{0.8}$$
(23)

$$F_{ax,\alpha,Rk} = k_{ax} \cdot f_{ax,k} \cdot d \cdot l_g \cdot \left(\frac{\rho_k}{730}\right)^{0,8}$$
(24)

with

$$k_{ax} = \min \begin{cases} 0, 3 + (0, 7 \cdot \varepsilon) / 45^{\circ} \\ 1,00 \end{cases}$$
(25)

The penetration length in hardwood has to be at least  $I_{ef} \ge 4 \cdot d$ .

#### Where

*d* Outer thread diameter of the screw [mm]

- *f*<sub>ax,k</sub> Characteristic withdrawal strength parameter, see Table D11.1 and D11.2 [N/mm<sup>2</sup>]
- *k*<sub>ax</sub> Factor to consider the influence between the angle of the screw axis and the grain-direction [-]
   *L*<sub>ef</sub> Penetration length of the threaded part of the screw, including the screw head and/or
- *l*<sub>ef</sub> Penetration length of the threaded part of the screw, including the screw head and/or screw tip [mm]
- $l_g$   $l_g = l_{gp} l_t \text{[mm]}$ Penetration length of the threaded part of the screw with d = const.Values for  $l_t$  see Annex A;  $l_t$  ...length of the screw tip [mm]
- $n_{\rm ef}$  Effective number of screws, see Annex D15 [-]

 $F_{ax,\alpha,Rk}$  Characteristic withdrawal capacity of the screw with an angle  $\alpha$ 

- to the grain-direction [N]
- $\varepsilon$  Angle between grain-direction and the screw axis [°], see Figure D2.1
- $\rho_k$  Characteristic gross density of the timber/wood based member [kg/m<sup>3</sup>]

| fischer | PowerFast I | I |
|---------|-------------|---|
|         |             | - |

Axial resistance of the screw under tension

Annex D10

**Table D11.1:** Characteristic values of »fischer PowerFast II – Chipboard screws« of the withdrawal strength parameter in Structural Timber in softwood and Laminated Veneer Lumber according to ETA-14/0354, referred to  $l_{ef}$ 

| Outer thread diameter <i>d</i> [mm]<br>Values referred to the effective length <i>l</i> <sub>ef</sub> ,<br>see equations (19) and (23) |                                                     | 3,0                      | 3,5  | 4,0     | 4,5     | 5,0      | 6,0    |      |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------|------|---------|---------|----------|--------|------|
| Product                                                                                                                                | Abbreviation                                        | Parameter                |      | Withdra | awal ca | pacity [ | N/mm²] |      |
| Structural Timber<br>Parallel Laminated<br>Timber                                                                                      | ST-c, ST-d, FST,<br>GST, GLT-c, BGLT,<br>SWP-P, CLT | f <sub>ax,k</sub>        | 15,5 | 14,9    | 14,5    | 14,1     | 13,8   | 12,9 |
| LVL                                                                                                                                    |                                                     | <b>f</b> ax,90 90,k      | -    | -       | -       | -        | 40,0   | 32,0 |
| according to<br>ETA-14/0354                                                                                                            | LVL                                                 | <i>f</i> ax,90 00,k      | -    | -       | -       | -        | 32,0   | 24,0 |
| (see Figure D10.1)                                                                                                                     |                                                     | <b>f</b> ax,00 00,k      | I    | -       | -       | -        | 32,0   | 24,0 |
| Giant Bamboo                                                                                                                           |                                                     | <i>f</i> <sub>ax,k</sub> | -    | -       | -       | -        | -      | 30,0 |

**Table D11.2:** Characteristic values of »fischer PowerFast II – Wood Construction screws« of the withdrawal strength parameter in Structural Timber in softwood and Laminated Veneer Lumber according to ETA-14/0354, referred to  $l_{ef}$ 

| Outer thread diameter <i>d</i> [mm]<br>Values referred to the effective length <i>l</i> <sub>ef</sub> , |                                                |                          | 8,0  | 10,0  | 12,0     |                 |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------|------|-------|----------|-----------------|
| see equations (19) and (23)                                                                             |                                                |                          |      |       |          |                 |
| Product Abbreviation Parameter                                                                          |                                                |                          |      | Withd | rawal ca | apacity [N/mm²] |
| Structural Timber<br>Parallel Laminated Timber                                                          | ST-c, ST-d, FST,<br>GST, GLT-c, BGLT,<br>SWP-P | <i>f</i> ax,k            | 12,0 | 11,5  | 10,3     |                 |
| Cross Laminated Timber<br>in the plane surface                                                          | CLT                                            | <i>f</i> <sub>ax,k</sub> | 12,0 | 11,5  | 10,3     |                 |
| LVL                                                                                                     |                                                | <i>f</i> ax,90 90,k      | 30,0 | 28,0  | -        |                 |
| according to ETA-14/0354                                                                                | LVL                                            | <i>f</i> ax,90 00,k      | 22,0 | 20,0  | -        |                 |
| (see Figure D10.1)                                                                                      |                                                | <i>f</i> ax,00 00,k      | 22,0 | 20,0  | -        |                 |



Figure D11.1: fischer PowerFast II in LVL-d (figure not to scale)

| fischer PowerFast II - Performance          | Anney D44 |
|---------------------------------------------|-----------|
| Axial resistance of the screw under tension | Annex D11 |

**Table D12.1:** Characteristic values of »fischer PowerFast II – Chipboard screws« and »fischer PowerFast II - Wood Construction screws« of the withdrawal strength parameter in Structural Timber in softwood and Laminated Veneer Lumber according to ETA-14/0354, referred to  $l_g$ 

| Outer thread diameter $d$ [mm]<br>Values referred to the threaded length with constant<br>diameter $l_{g}$ ,<br>see equation (20) and (24) |                                                    |                     | 6,0  | 8,0      | 10,0      | 12,0      |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------|------|----------|-----------|-----------|------------------|
| Product                                                                                                                                    | Abbreviation                                       | Parameter           | W    | lithdraw | al capaci | ity [N/mm | 1 <sup>2</sup> ] |
| Structural Timber<br>Parallel Laminated Timber                                                                                             | ST-c, FST, GST,<br>GLT-c,<br>GLT-d, BGLT,<br>SWP-P | f <sub>ax,k</sub>   | 20,0 | 15,0     | 13,5      | -         |                  |
|                                                                                                                                            |                                                    | <i>f</i> ax,90 90,k | 48,0 | -        | -         | -         |                  |
| LVL according to ETA-14/0354                                                                                                               | LVL                                                | <i>f</i> ax,90 00,k | 44,6 | -        | -         | -         |                  |
| according to ETA-14/0354                                                                                                                   |                                                    | <i>f</i> ax,00 00,k | 31,6 | -        | -         | -         |                  |

The characteristic axial withdrawal capacity of »fischer PowerFast II« screws with an angle of  $\alpha = 90 \mid 90$  in wood-based panels with a minimum thickness and/or a penetration depth of the threaded part of at least *4*·*d* can be calculated according to equation (26) for applications in the plane surface.

$$F_{ax,\alpha,Rk} = n_{ef} \cdot f_{ax,90|90,k} \cdot d \cdot l_{ef}$$
<sup>(26)</sup>

Where

 $\begin{array}{ll} d & \text{Outer thread diameter of the screw [mm]} \\ f_{ax,90|90,k} & \text{Characteristic withdrawal parameter in the plane surface [N/mm^2]} \\ n_{\text{ef}} & \text{Effective number of screws, see Annex D15 [-]} \\ I_{\text{ef}} & \text{Penetration length of the threaded part of the screw, including the screw head and/or screw tip [mm]} \end{array}$ 

**Table D12.2:** Characteristic values of »fischer PowerFast II – Chipboard screws« of the withdrawal strength parameter in the plane surface of derived wood panels, referred to  $l_{ef}$ 

| Outer thread diameter <i>d</i> [m<br>Values referred to the effec<br>see equations (19) and (23) | tive length <i>l</i> ef, |                          | 3,0  | 3,5    | 4,0     | 4,5      | 5,0    | 6,0  |
|--------------------------------------------------------------------------------------------------|--------------------------|--------------------------|------|--------|---------|----------|--------|------|
| Product Abbreviation Parameter                                                                   |                          |                          |      | Withdr | awal ca | pacity [ | N/mm²] |      |
| Oriented strand board<br>(EN 300)                                                                | OSB                      | f <sub>ax,k</sub>        | 9,3  | 9,0    | 8,6     | 8,3      | 8,0    | 7,1  |
| Particleboard<br>(EN 312)                                                                        | RPB                      | <i>f</i> <sub>ax,k</sub> | 11,9 | 11,1   | 10,3    | 9,5      | 8,7    | 7,1  |
| Fibreboards<br>(EN 622-2)                                                                        | HB                       | f <sub>ax,k</sub>        | 13,2 | 12,4   | 11,6    | 10,8     | 10,0   | 8,5  |
| Laminated veneer lumber<br>(EN 14374)                                                            | LVL-C                    | <b>f</b> <sub>ax,k</sub> | 16,0 | 15,4   | 14,7    | 14,0     | 13,3   | 12,0 |

#### fischer PowerFast II - Performance

Annex D12

Axial resistance of the screw under tension

The characteristic axial withdrawal capacity of »fischer PowerFast II« screws for predrilled applications in the edge surface with an angle  $\alpha = 90 \mid 00$  (see Figure D11.1) in wood-based panels with a thickness of at least 5·*d* arranged in the center of the thickness of the panel with a penetration depth of the threaded part of the screws of at least 6·*d* can be calculated according to equation (27).

$$F_{ax,\alpha,Rk} = n_{ef} \cdot f_{ax,90|00,k} \cdot d \cdot l_{ef}$$
<sup>(27)</sup>

Where

dOuter thread diameter of the screw [mm]f\_{ax,90|00,k}Characteristic withdrawal parameter in the edge surface [N/mm²]n\_{ef}Effective number of screws, see Annex D15 [-]l\_{ef}Penetration length of the threaded part of the screw, including the screw head and/or screw tip [mm]

**Table D13.1:** Characteristic values of »fischer PowerFast II – Chipboard screws« of the withdrawal strength parameter in the edge surface of derived wood panels, referred to  $l_{ef}$ 

| Outer thread diameter <i>d</i> [mm]<br>Values referred to the effective length <i>l</i> <sub>ef</sub> ,<br>see equations (19) and (24) |              | 4,0                      | 4,5                                      | 5,0 | 6,0 |     |  |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|------------------------------------------|-----|-----|-----|--|
| Product                                                                                                                                | Abbreviation | Parameter                | Withdrawal capacity [N/mm <sup>2</sup> ] |     |     |     |  |
| Oriented strand board<br>(EN 300)                                                                                                      | OSB          | <b>f</b> <sub>ax,k</sub> | 6,0                                      | 5,8 | 5,6 | 5,1 |  |
| Particleboard<br>(EN 312)                                                                                                              | RPB          | <b>f</b> <sub>ax,k</sub> | 5,6                                      | 5,4 | 5,2 | 4,7 |  |
| Fibreboards<br>(EN 622-2)                                                                                                              | НВ           | <b>f</b> <sub>ax,k</sub> | 7,0                                      | 6,5 | 6,0 | 5,1 |  |
| Laminated veneer lumber<br>(EN 14374)                                                                                                  | LVL-C        | <b>f</b> <sub>ax,k</sub> | 9,2                                      | 8,8 | 8,4 | 7,5 |  |

#### fischer PowerFast II - Performance

Axial resistance of the screw under tension

#### **1.2.3** Withdrawal capacity $F_{ax,Rk}$ for use in Cross Laminated Timber (CLT)

If there are no other technical specification (ETA or hEN) for Cross Laminated Timber (CLT), the withdrawal capacity for screws can be calculated as following.

#### Screws in the plane surface

The withdrawal capacity for screws with  $d \ge 6$  mm in the plane surface of CLT-c elements should be assumed as for Structural Timber according to equation (19) based on a characteristic density in accordance to equation (28), if there are no other specifications given. If necessary, gaps between the single lamellas have to be considered.

$$\rho_k = 1, 1 \cdot \rho_{lav,k} \tag{28}$$

Where

 $\rho_{lk}$  Characteristic density for the calculation in equation (19) [kg/m<sup>3</sup>]

 $\rho_{\text{lay,k}}$  Lowest characteristic density of the lamellas in a layer of the CLT-c element [kg/m<sup>3</sup>]

#### Screws in the narrow side

The withdrawal capacity for screws in the narrow side of CLT-elements should be assumed according to equation (29).

$$F_{ax,Rk} = 20 \cdot d^{0,8} \cdot l_{ef}^{0,9}$$
(29)

If possible, the screws in the narrow side should be driven perpendicular into the grain-direction of the lamella. To avoid unwanted effects by screwing in only parallel to the grain direction, and gaps between lamellas in the narrow side of CLT panels, the considered penetration length  $I_{ef}$  in equation (29) should be decreased by  $3 \cdot d$  (for calculation only).

If it is guaranteed that the angle between the grain-direction of the lamellas and the screw axis is  $\ge 30^{\circ}$ , the characteristic withdrawal capacity from equation (29) can be increased of about 25 %.

For screws penetrating more than one layer of Cross Laminated Timber, the different layers may be considered proportionally.

#### fischer PowerFast II

Axial resistance of the screw under tension

# 1.2.4 Effective number of screws *n*<sub>ef</sub>

For axially loaded screws in tension, where the external force is parallel to the screw axis, the following rules should be applied.

| $ \left\{\begin{array}{l} n^{0,9}\\ 0,9\cdot n\\ 0,9\cdot n\\ n\end{array}\right\} $ | in general without torque controlled insertion drivers<br>for screws $30^{\circ} \le \varepsilon \le 90^{\circ}$ and torque controlled insertion drivers<br>for a group with more than 10 screws in a timber-to-timber connection<br>(e.g. ST, PL, CL, LVL, PLY, OSB)<br>for a group up to 10 screws in a timber-to-timber connection | (30) |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                                                                                      | (e.g. ST, PL, CL, LVL, PLY, OSB)                                                                                                                                                                                                                                                                                                      |      |

#### Where

*n* Number of screws acting together in a joint [-]

ε Angle between screw axis and grain-direction [°]

#### fischer PowerFast II

Effective number of screws for axial resistances of the screws under tension

# 1.3 Head pull-through capacity *F*<sub>head,Rk</sub>

1.3.1 Head pull-through capacity f<sub>head,k</sub> for use in Solid Timber (ST-c, FST, GST, BGLT) Glued Laminated Timber (GLT-c), Cross Laminated Timber (CLT) and Wood-based panels (WFB, WPB)

The characteristic head pull-through capacity of »fischer PowerFast II« screws in Solid Timber can be calculate as following.

$$F_{head,Rk} = n_{ef} \cdot f_{head,k} \cdot d_h^2 \cdot \left(\frac{\rho_k}{350}\right)^{0.8}$$
(31)

Where

*d*<sub>h</sub> Diameter of the screw head [mm]

*n*<sub>ef</sub> Effective number of screws according to Annex D7 and D14

 $\rho_{\rm k}$  Characteristic density of the timber element [kg/m<sup>3</sup>]

f<sub>head,k</sub> Characteristic head pull-through parameter for »fischer PowerFast II« given below [N/mm<sup>2</sup>]

For timber elements with a thickness of at least 20 mm, the characteristic value of the head pull-through parameter  $f_{head,k}$  can be taken into account as following.

**Table D16.1:** Characteristic values of the head pull-through parameter for ST-c/d, GST, FST, GLT-c/d, BGLT

| Outer thread diameter d                                                         |                                    | 3,0                 | 3,5  | 4,0  | 4,5  | 5,0           | 6,0             | 8,0  | 10,0  | 12,0 |      |
|---------------------------------------------------------------------------------|------------------------------------|---------------------|------|------|------|---------------|-----------------|------|-------|------|------|
| Head type                                                                       | Material<br>(Annex B)              | Parameter           |      |      | Head | d pull-t<br>I | hrough<br>N/mm² | -    | neter |      |      |
| Countersunk,<br>Raised countersunk<br>and Pan head<br>(Annex A1, A2,<br>A3, A7) | ST-c,<br>ST-d,<br>FST,<br>GST,     |                     | 19,0 | 16,3 | 15,0 | 14,2          | 13,4            | 13,0 | 12,5  | 12,0 | 11,6 |
| Washer head and<br>Screw with<br>clamping effect<br>(Annex A4, A5, A8)          | GLT-c,<br>GLT-d,<br>BGLT,<br>SWP-P | f <sub>head,k</sub> | -    | -    | -    | -             | 20,0            | 15,5 | 14,3  | 12,6 | 11,2 |
| Step countersunk<br>(Annex A6, A9)                                              | 300                                |                     | -    | -    | -    | -             | 19,5            | 15,0 | 13,5  | 11,5 | -    |
| Hexagon head<br>(Annex A10, A11)                                                |                                    |                     | -    | -    | -    | -             | -               | -    | 10,0  | 10,0 | 10,0 |

For steel-to-timber connections the head pull-through capacity may be disregarded.

Notes: An accurate fit is important to avoid any kind of notch stresses see also Annex B4 The tear-off capacity of the screw head is greater than the tensile capacity of the screw

For the wood-based panels with a thickness of more than 20 mm the characteristic value of the head pull-through parameter can be calculated with

$$f_{head,k} = 10 \text{ N/mm}^2$$
 (32)

For wood-based panels with a thickness between 12 mm and 20 mm the characteristic value of the head pull-through parameter can be calculated with

$$f_{head,k} = 8 \text{ N/mm}^2 \tag{33}$$

For wood-based panels with a thickness of less than 12 mm the characteristic head pull-through capacity can be calculated with  $f_{head,k}$ = 8 N/mm<sup>2</sup> with a limit of 400 N complying with a minimum thickness of the wood based panels of 1,2·*d*. In addition, the minimum thickness of Table D17.1 applies.

**Table D17.1:** Minimum thickness of Wood-Based Panels

 be fixed on the side of the screw head

| Wood-based panel                | Min. thickness<br>[mm] |
|---------------------------------|------------------------|
| Plywood                         | 6                      |
| Oriented strand board           | 8                      |
| Solid wood panels               | 12                     |
| Particleboards                  | 8                      |
| Cement bonded particle boards   | 8                      |
| Fibreboards                     | 6                      |
| (hard boards and medium boards) | 0                      |
| Gypsum fibre and Plasterboards  | 12                     |

The characteristic head pull-through capacity in softwood of the FAFS–Clip of adjustable frame screw can be calculated for tension and/or compression (push-through capacity) loads of the screws with the characteristic values given in Table D17.2.

**Table D17.2:** Characteristic values of the head pull-through capacities of Screws with Clamping effect and FAFS-Clip (see Annex A4 and A12)

| Outer thread diameter d [mm]  |                                                | 3,5                                     | 4,0      | 4,5        | 5,0       |        |
|-------------------------------|------------------------------------------------|-----------------------------------------|----------|------------|-----------|--------|
| Head type                     | Product<br>Abbreviation                        | Parameter                               | Headside | pull-throu | igh capao | ty [N] |
| Screw with<br>clamping effect |                                                | $m{m{	au}}_{	ext{headside},	ext{Rk}}$   | 1220     | 1485       | 1750      | -      |
| FAFS-Clip                     | ST-c, FST-c, GST-c,<br>GLT-c, BGLT-c,<br>SWP-P | F <sub>FAFS,t,Rk</sub><br>(tension)     | -        | -          | -         | 2200   |
| FAF3-Clip                     | SWF-F                                          | F <sub>FAFS,c,Rk</sub><br>(compression) | -        | -          | -         | 1290   |

#### fischer PowerFast II

Head pull-through capacity

# 1.4 Compression capacity in Solid Timber (ST, FST, GST) and

# Glued Laminated Timber (GLT-c, BGLT) and Laminated Veneer Lumber (LVL-c)

The design compressive capacity  $F_{ax,Rd}$  of »fischer PowerFast II« screws with the thread completely embedded in timber and a free screw length protruding from the timber member, including the screw head, and additional head supporting thick metal plates according to Annex L, shall be calculated as following.

$$F_{ax,\alpha,Rd} = \min \begin{cases} F_{ax,\alpha,Rd} \\ F_{b,Rd} \end{cases}$$
(34)

Where

 $\begin{array}{ll} {\it F}_{ax,\alpha,Rd} & & {\rm Withdrawal\ capacity\ see\ Annex\ D9\ to\ D15\ [N]} \\ {\it F}_{b,Rd} & & {\rm Buckling\ strength\ [N]} \end{array}$ 

$$F_{b,Rd} = 1,10 \cdot \kappa_c \cdot N_{pl,Rd}$$
(35)

With

$$\kappa_{c} = 1 \qquad \text{for } \overline{\lambda} \le 0,2$$

$$\kappa_{c} = \frac{1}{k + \sqrt{k^{2} - \overline{\lambda}^{2}}} \qquad \text{for } \overline{\lambda} > 0,2 \qquad (36)$$

and

$$k = 0,5 \cdot \left[1 + 0,49 \cdot \left(\overline{\lambda} - 0,2\right) + \overline{\lambda}^2\right]$$
(37)

The relative slenderness ratio shall be calculated with

$$\overline{\lambda} = \sqrt{\frac{N_{pl,k}}{N_{b,k}}} \tag{38}$$

With the characteristic value for the axial capacity in case of plastic analysis

$$N_{pl,k} = \frac{d_s^2 \cdot \pi}{4} \cdot f_{y,k} \tag{39}$$

With

*d*<sub>s</sub> Outer shank diameter of the screw [mm]

 $f_{y,k}$  Yield strength, see Annex C1, Table C1.1 [N/mm<sup>2</sup>]

 $N_{pl,k}$  Characteristic value of the plastic axial capacity [N]

#### fischer PowerFast II

Compression capacity of the screws

Annex D18

With the characteristic value for buckling strength

 $N_{b,k} = \frac{\pi^2 \cdot E_s I_s}{l_{ef}^2} \tag{40}$ 

With the

Modulus of elasticity

$$E_s = 210.000 \text{ N/mm}^2$$
 (41)

and the second moment of area

$$I_s = \frac{\pi \cdot d_s^4}{64} \tag{42}$$

Where

 $d_{s}$  Outer shank diameter  $d_{s}$  [mm]

- *I*<sub>ef</sub> Buckling length [mm] *with I*<sub>ef</sub>=0,7□*I*
- *I* Free screw length protruding of the timber member including the screw head [mm]

Note: The compressive capacity must be modified for  $F_{ax,\alpha,Rd}$  with the factors  $k_{mod}$  and  $\gamma_M$  for timber connections according to EN 1995-1-1, while  $N_{pl,Rd}$  the partial-factor  $\gamma_{M,1}$  for steel buckling according to EN 1993-1-1 and/or national standards respectively have to be considered. For  $\gamma_M$ ,  $\gamma_{M,1}$  the values  $\gamma_M = 1,3$  and  $\gamma_{M,1} = 1,1$  are recommended.

Screws loaded in compression with additional head supporting thick metal plates where distortion and displacement of the screw head perpendicular to the buckling loads are not possible, should be considered in accordance to Table L1.1 (see Annex L1).

#### fischer PowerFast II

Annex D19

Buckling capacities of screws with free span length

#### 1.5 Combined laterally and axially loaded screws

For connections subjected to a combination of axial and lateral loads, the following equation has to be considered.

$$\left(\frac{F_{ax,Ed}}{F_{ax,Rd}}\right)^2 + \left(\frac{F_{v,Ed}}{F_{v,Rd}}\right)^2 \le 1$$
(43)

Where

*F*<sub>ax,Ed</sub> Axial design action [N]

*F*<sub>v,Ed</sub> Lateral design action [N]

*F*<sub>ax,Rd</sub> Design load-carrying capacity of axially loaded screws [N]

*F*<sub>v,Rd</sub> Design load-carrying capacity of laterally loaded screws [N]

fischer PowerFast II

Combined loads

Annex D20

# 1.6 Slip modulus in the Serviceability Limit State

#### 1.6.1 Laterally loaded screws

For laterally loaded »fischer PowerFast II« screws, the slip modulus, predrilled or non-predrilled, for the serviceability limit state (SLS) should be calculated according to EN 1995-1-1 independent of the load grain-direction angle  $\alpha$  with equation (44).

$$K_{v,ser} = k_{st} \cdot k_{sp} \cdot C_{v,ser} \tag{44}$$

With

*k*<sub>st</sub>

 $k_{st} = \begin{cases} 1 & \text{for timber-timber connections} \\ 2 & \text{for steel-timber connections} \end{cases}$ 

*k*<sub>sp</sub> Number of shear planes

*C*<sub>v,ser</sub> Slip modulus in the Serviceability limit state (SLS) each shear plane, Table D21.1 [N/mm]



Figure D17.1: Definition of the shear plane  $k_{sp}$  (figure not to scale)

#### 1.6.2 Axially loaded screws

For axially loaded screws the slip modulus for the serviceability limit state (SLS) can be calculated according to equation (45).

$$K_{ax,ser} = C_{ax,ser} \tag{45}$$

With

*d* Outer thread diameter [mm]

*l*ef Penetration length of the threaded part , including the tip in [mm]

C<sub>ax,ser</sub> Slip modulus in the serviceability limit state (SLS), Table D21.1 [N/mm]

#### fischer PowerFast II

Slip modulus in SLS

Annex D21

#### **1.7** Slip modulus in the ultimate limit state

To consider the slip modulus  $K_u$  in the ultimate limit state (ULS)  $K_{ser}$  has to be reduced for both directions (laterally and axially) according to EN 1995-1-1 with

$$K_u = 2/3 \cdot K_{ser} \tag{46}$$

#### 1.7.1 Laterally loaded screws

For laterally loaded »fischer PowerFast II« screws, the slip modulus, predrilled or non-predrilled, for the ultimate limit state (ULS) should be calculated according to EN 1995-1-1 independent of the load grain-direction angle  $\alpha$  with equation (46).

**Table D22.1:** Mean values of the lateral slip-modules in Serviceability Limit State (SLS) in the plane surface of timber elements and wood based panels

| Outer thread diameter <i>d</i> [mm] | 3,0 – 12,0 mm                                               |
|-------------------------------------|-------------------------------------------------------------|
| Material                            | Lateral Slip-Modulus C <sub>v,ser</sub> [N/mm]              |
| Solid Timber                        |                                                             |
| Glued-Laminated Timber              | $ ho_m^{1,5} \cdot d$                                       |
| Softwood and Hardwood               | $\frac{\rho_m^{1,5} \cdot d}{23}$                           |
| (EN 338, EN 15497, EN 14080)        | 25                                                          |
| OSB                                 |                                                             |
| t > 5 mm                            | 6,8· <i>p</i> <sub>m</sub> ·d <sup>-0,4</sup>               |
| (EN 300)                            |                                                             |
| Plywood                             |                                                             |
| t > 4 mm                            | 740                                                         |
| (EN 314-2)                          |                                                             |
| Fibreboards                         |                                                             |
| t > 3 mm                            | <b>9</b> · <i>ρ</i> <sub>m</sub> · <b>d</b> <sup>-0,9</sup> |
| (EN 622-2, EN 622-3)                |                                                             |
| Particleboards                      | <b>c</b> -+04                                               |
| t > 5 mm                            | $3 \cdot \rho_m \cdot \mathbf{d}^{-0,4}$                    |
| (EN 312)                            |                                                             |
| Gypsum plasterboards<br>t ≥ 9 mm    | 6700·d <sup>-087</sup>                                      |
| (EN 520)                            | 0700 0                                                      |
| Gypsum boards with fibrous          |                                                             |
| reinforcement                       |                                                             |
| $t \ge 9 \text{ mm}$                | 1,4· <i>ρ</i> m·d <sup>−0,7</sup>                           |
| (EN 15283-2)                        |                                                             |
| LVĹ                                 | - 1.5 <i>t</i>                                              |
| Soft- and Hardwood                  | $\frac{\rho_m^{-1,5} \cdot d}{20}$                          |
| (EN 14374)                          | 20                                                          |

fischer PowerFast II

Annex D22

Slip modulus in ULS

#### 1.7.2 Axially loaded screws

For axially loaded »fischer PowerFast II« screws, the slip modulus, predrilled or non-predrilled, for the ultimate limit state (ULS) should be calculated according to EN 1995-1-1 independent of the load grain-direction angle  $\alpha$  with equation (46).

**Table D23.1:** Mean values of the axial slip-modules in Serviceability Limit State (SLS) in the plane surface of timber elements and wood based panels

| Outer thread diameter <i>d</i> [mm] | 3,0 – 12,0 mm                                 |
|-------------------------------------|-----------------------------------------------|
| Material                            | Axial Slip-Modulus C <sub>ax,ser</sub> [N/mm] |
| Softwood                            | 32·d·l <sub>ef</sub>                          |
| <i>ρ</i> <sub>k</sub> ≥ 350 kg/m³   | 32°0° lef                                     |
| Hardwood                            | 38· d· l <sub>ef</sub>                        |
| <i>ρ</i> <sub>k</sub> ≥ 510 kg/m³   | 30'U'I <sub>ef</sub>                          |
| OSB                                 |                                               |
| t > 5 mm                            | 10· <i>d</i> · <i>l</i> <sub>ef</sub>         |
| (EN 300)                            |                                               |
| Fibreboards                         |                                               |
| t > 3 mm                            | 15· <i>d</i> · <i>l</i> <sub>ef</sub>         |
| (EN 622-2, EN 622-3)                |                                               |
| Particleboards                      |                                               |
| t > 5 mm                            | 10· <i>d</i> · <i>l</i> <sub>ef</sub>         |
| (EN 312)                            |                                               |
| LVL (EN 14374)                      |                                               |
| Soft- and Hardwood                  | 28· <i>d</i> · <i>l</i> <sub>ef</sub>         |
| <i>ρ</i> <sub>k</sub> ≥ 480 kg/m³   | ∠o·u· <i>l</i> ef                             |
| α=90 90, see D9.1                   |                                               |

#### fischer PowerFast II

Slip modulus in ULS

Annex D23







The bending stresses of the battens are calculated with

$$M_{Ed} = \frac{\left(F_{Ed} + F_{s,Ed}\right) \cdot l_{char}}{4} \tag{49}$$

Where

| vvnere                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| F <sub>Ed</sub><br>F <sub>s,Ed</sub><br>M <sub>Ed</sub><br>I <sub>char</sub> | Point loads perpendicular to the battens [N]<br>Point loads perpendicular to the battens in the area of the screw heads<br>Design bending moment of the batten [Nmm]<br>Characteristic length of the batten [mm]<br>$\sqrt{4 \cdot EI}$                                                                                                                                                             | [N]                                         |
|                                                                              | with $l_{char} = 4 \sqrt{\frac{4 \cdot EI}{w_{ef} \cdot K}}$ , where                                                                                                                                                                                                                                                                                                                                |                                             |
|                                                                              | <i>EI</i><br><i>w</i> <sub>ef</sub> Bending stiffness of the batten [Nmm <sup>2</sup> ]<br><i>w</i> <sub>ef</sub> Effective width of the thermal insulation [mm]<br>with $w_{ef} = w + t_{ti} / 2$ , where<br><i>w</i> Minimum width of the batten or rafter [mm]<br>$t_{ti}$ Thickness of the thermal insulation [mm]                                                                              |                                             |
|                                                                              | KBedding modulus [N/mm³]<br>The coefficient K may be calculated from the modulus of elast<br>thickness $t_{ti}$ of the thermal insulation if the effective width $w_{ef}$ or<br>insulation under compression is known. Due to the load extension<br>insulation the effective width $w_{ef}$ is greater than the width of the<br>rafter, respectively. For further calculations, the effective width | f the thermal<br>sion in the<br>e batten or |
|                                                                              | thermal insulation may be determined with $K = \frac{E_{ti}}{t}$ , where                                                                                                                                                                                                                                                                                                                            |                                             |
|                                                                              | $E_{ti}$ Modulus of elasticity of the thermal insulation [N/mm <sup>2</sup> ]<br>$t_{ti}$ Thickness of the thermal insulation [mm]                                                                                                                                                                                                                                                                  |                                             |
| The follow                                                                   | ving conditions shall be satisfied:                                                                                                                                                                                                                                                                                                                                                                 |                                             |
|                                                                              | $\frac{\sigma_{m,Ed}}{f_{m,d}} \leq 1$                                                                                                                                                                                                                                                                                                                                                              | (50)                                        |
| Where                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |
| $\sigma_{m,Ed}$<br>$f_{m,d}$                                                 | Design value of the bending stress of the batten [N/mm²]<br>Design value of the bending strength [N/mm²]                                                                                                                                                                                                                                                                                            |                                             |
|                                                                              | $\frac{\tau_{Ed}}{f_{v,d}} = \frac{3 \cdot V_{Ed}}{2 \cdot A_{ef} \cdot f_{v,d}} \le 1$                                                                                                                                                                                                                                                                                                             | (51)                                        |
| Where<br>f <sub>v,d</sub><br>A <sub>ef</sub><br>V <sub>Ed</sub>              | Design value of the shear strength of the batten [N/mm <sup>2</sup> ]<br>Net cross section of the batten [mm <sup>2</sup> ]<br>Design shear load onto the batten [N]<br>with $V_{Ed} = \frac{F_{Ed} + F_{s,Ed}}{2}$                                                                                                                                                                                 |                                             |
| $	au_{Ed}$                                                                   | With $V_{Ed} = \frac{1}{2}$<br>Design value of the shear stress of the batten [N/mm <sup>2</sup> ]                                                                                                                                                                                                                                                                                                  |                                             |
|                                                                              | fischer PowerFast II                                                                                                                                                                                                                                                                                                                                                                                | Annex E4                                    |
|                                                                              | Fixations of on-roof insulation                                                                                                                                                                                                                                                                                                                                                                     | (informative)                               |

If the compressive stresses are transferred over the thermal insulation and not the screws, the following equation has to be considered.

$$\sigma_{c,Ed} = \frac{1.5 \cdot F_{Ed} + F_{s,Ed}}{2 \cdot l_{char} \cdot w_{ef}}$$
(52)

Where

Design value of the compression stresses of the thermal insulation  $\sigma_{\!
m c,Ed}$ Point loads perpendicular to the battens [N]  $F_{Ed}$ Point loads perpendicular to the battens in the area of the screw heads [N]  $F_{s,Ed}$ Characteristic length of the batten [mm] *l*<sub>char</sub> with  $l_{char} = \sqrt[4]{\frac{4 \cdot EI}{w_{ef} \cdot K}}$ , where ΕI Bending stiffness of the batten [Nmm<sup>2</sup>] Effective width of the thermal insulation [mm] Wef with  $W_{ef} = w + t_{ti} / 2$ , Where w Minimum width of the batten or rafter [mm]  $t_{\rm ti}$  Thickness of the thermal insulation [mm] Κ Bedding modulus [N/mm<sup>3</sup>] The coefficient K may be calculated from the modulus of elasticity  $E_{ti}$  and the thickness  $t_{\rm ti}$  of the thermal insulation if the effective width  $w_{\rm ef}$  of the thermal insulation under compression is known. Due to the load extension in the insulation the effective width  $w_{ef}$  is greater than the width of the batten or rafter, respectively. For further calculations, the effective width  $w_{ef}$  of the thermal insulation may be determined with  $K = \frac{E_{ti}}{L}$ , where  $E_{ii}$  Modulus of elasticity of the thermal insulation [N/mm<sup>2</sup>]  $t_{\rm ti}$  Thickness of the thermal insulation [mm]

Note: The design value of the compressive stress shall not be greater than 110 % of the compressive stress at 10 % deformation calculated according to EN 826.

#### fischer PowerFast II

Fixations of on-roof insulation

Annex E5 (informative)

The screws are loaded predominantly axially. The axial tension force in the screw may be calculated from the shear loads of the roof

$$F_{\alpha x, Ed} = \frac{R_{s, Ed}}{\cos \alpha_r} \le F_{\alpha x, \alpha, Rd}$$
(53)

Where

 $F_{ax,Ed}$ Design value of the axial tension forces onto the screw [N] $F_{ax,\alpha,Rd}$ Design value of the withdrawal capacity of the screw [N] $R_{s,Ed}$ Shear loads onto the screw [N] $\alpha_r$ Angle inclined screw (see Figure L3.1) [°]

In order to limit the deformation of the screw head for heat insulation thicknesses over 200 mm or with compressive strength below 0,12 N/mm<sup>2</sup>, respectively, the axial withdrawal capacity of the screws shall be reduced by the factors  $k_1$  and  $k_2$ .

The design axial capacity of fischer PowerFast II screws for rafter or façade installation should be calculated with equation (54). The load-carrying capacity of axially loaded screws is the minimum design value of the axial withdrawal capacity of the threaded part of the screw, the head pull-through capacity of the screw and the tensile capacity of the screw.

$$F_{ax,\alpha,Rd} = \min\left\{k_{ax} \cdot f_{ax,d} \cdot d \cdot l_{ef,r} \cdot k_1 \cdot k_2 \cdot \left(\frac{\rho_{k,r}}{350}\right)^{0,8}; \max\left\{\frac{f_{head,d} \cdot d_h^2}{k_{ax} \cdot f_{ax,d} \cdot d \cdot l_{ef,b}}\right\} \cdot \left(\frac{\rho_{k,b}}{350}\right)^{0,8}; f_{tens,d}\right\}$$
(54)

Where

| $F_{ax, \alpha, Rd}$       | Design value of the withdrawal capacity of the screw [N]                                              |
|----------------------------|-------------------------------------------------------------------------------------------------------|
| d                          | Diameter of the screw [mm]                                                                            |
| <b>d</b> h                 | Head diameter of the screw [mm]                                                                       |
| <b>f</b> <sub>ax,d</sub>   | Design value of the withdrawal parameter of the threaded part of the screw [N/mm <sup>2</sup> ]       |
| <b>f</b> <sub>head,d</sub> | Design value of the head pull-through capacity of the screw [N/mm <sup>2</sup> ]                      |
| <b>f</b> <sub>tens,d</sub> | Design value of the tensile capacity of the screw [N]                                                 |
| <i>k</i> ax                | Coefficient according to equation (21)                                                                |
| <b>k</b> 1                 | min {1; 200 / <i>t</i> <sub>ti</sub> } [-]                                                            |
| <b>k</b> 2                 | min {1; σ <sub>10%,Ed</sub> / 0,12} [-], where                                                        |
|                            | $\sigma_{10\%,Ed}$ Compressive stress of the heat insulation at 10 % deformation [N/mm <sup>2</sup> ] |
|                            | <i>t</i> <sub>ti</sub> Thickness of the thermal insulation [mm]                                       |
| <i>l</i> ef,r              | Point side penetration length of the threaded part in the rafter with $l_{ef} \ge 40$ mm              |
| <i>l</i> ef,b              | Penetration length of the threaded part in the batten                                                 |
| α                          | Angle between grain and screw axis ( $\alpha > 30^\circ$ ) [°]                                        |
| $ ho_{k}$                  | Characteristic density of the timber element [kg/m³]                                                  |
| <i>I</i> = 15              |                                                                                                       |

Note: If the factors  $k_1$  and  $k_2$  are considered in the equation for  $F_{ax,Rd}$ , the deflection of the battens is not be taken into account. Alternatively to the battens, panels with a minimum thickness of 20 mm from plywood according to EN 636, national provisions or with an ETA that apply at the installation site, particle board according to EN 312, national provisions or with an ETA that apply at the installation site, oriented strand board according to EN 300, national provisions or with an ETA that apply at the installation site and solid wood panels according to EN 13353, national provisions or with an ETA that apply at the installation site or Cross- laminated Timber according to an ETA may be used.

| fischer PowerFast II            | Annex E6      |
|---------------------------------|---------------|
| Fixations of on-roof insulation | (informative) |

# Thermal insulation material on rafters with parallel screws perpendicular to the roof plane

Alternative to the battens, panels with a minimum thickness of 20 mm from plywood according to EN 636, particleboard according to EN 312, oriented strand board OSB/3 and OSB/4 according to EN 300 or European Technical Assessment and solid wood panels according to EN 13353 may be used.

The insulation must have a minimum compressive strength of  $\sigma_{10\%}$ =0,05 N/mm<sup>2</sup> at 10 % deformation according to EN 826.

The battens or wood-based panels, respectively, must have sufficient strength and stiffness. The maximum design value of the compressive stress between the battens or boards, respectively, and the insulation shall not exceed 1,1  $\sigma_{10\%}$ .

Characteristic load-carrying capacity of a screw loaded in shear may be calculated with

$$F_{v,Rk} = \min \begin{cases} f_{h,b,k} \cdot d \cdot t_{b} \\ f_{h,r,k} \cdot d \cdot t_{r} \\ \frac{f_{h,b,k} \cdot d \cdot \beta}{1+\beta} \cdot \left(\sqrt{4t_{ti}^{2} + (2+\frac{1}{\beta})t_{b}^{2} + (2+\beta)t_{r}^{2} + 4t_{ti}(t_{b} + t_{r}) + 2t_{b}t_{r}} - 2t_{ti} - t_{b} - t_{r}\right) + \frac{F_{ax,Rk}}{4} \\ 1,05 \cdot \frac{f_{h,b,k} \cdot d \cdot \beta}{\frac{1}{2} + \beta} \left(\sqrt{t_{ti}^{2} + t_{ti}t_{b} + \frac{t_{b}^{2}}{2}\left(1 + \frac{1}{\beta}\right) + \frac{M_{y,k}}{f_{h,b,k} \cdot d}\left(1 + \frac{2}{\beta}\right)} - t_{ti} - \frac{t_{b}}{2}\right) + \frac{F_{ax,Rk}}{4} \\ 1,05 \cdot \frac{f_{h,b,k} \cdot d \cdot \beta}{\frac{1}{2} + \beta} \left(\sqrt{t_{ti}^{2} + t_{ti}t_{r} + \frac{t_{r}^{2}}{2}(1 + \beta) + \frac{M_{y,k}}{f_{h,b,k} \cdot d}\left(2 + \frac{1}{\beta}\right)} - t_{ti} - \frac{t_{r}}{2}\right) + \frac{F_{ax,Rk}}{4} \\ 1,05 \cdot \frac{f_{h,b,k} \cdot d \cdot \beta}{\frac{1}{2} + \beta} \left(\sqrt{t_{ti}^{2} + t_{ti}t_{r} + \frac{t_{r}^{2}}{2}(1 + \beta) + \frac{M_{y,k}}{f_{h,b,k} \cdot d}\left(2 + \frac{1}{\beta}\right)} - t_{ti} - \frac{t_{r}}{2}\right) + \frac{F_{ax,Rk}}{4} \\ 1,15 \cdot \frac{f_{h,b,k} \cdot d}{1 + \beta} \left(\sqrt{\beta^{2}t_{ti}^{2} + 4 \cdot \beta(\beta + 1) \cdot \frac{M_{y,k}}{f_{h,b,k} \cdot d}} - \beta \cdot t_{ti}\right) + \frac{F_{ax,Rk}}{4} \end{cases}$$

Where

| <b>F</b> <sub>v,RK</sub>  | Characteristic load-carrying capacity of a screw loaded in shear [N]                               |
|---------------------------|----------------------------------------------------------------------------------------------------|
| M <sub>y,k</sub>          | Characteristic yield moment of the screw [Nmm]                                                     |
| F <sub>ax,Rk</sub>        | The minimum characteristic load-carrying capacity of the axially loaded screws acc. to Annex D [N] |
| <b>f</b> <sub>h,b,k</sub> | Characteristic embedment strength of the batten [N/mm <sup>2</sup> ]                               |
| <b>f</b> <sub>h,r,k</sub> | Characteristic embedment strength of the rafter [N/mm <sup>2</sup> ]                               |
| d                         | Outer thread diameter [mm]                                                                         |
| <i>t</i> b                | Batten thickness [mm]                                                                              |
| <i>t</i> r                | The lower value of rafter thickness or screw penetration length [mm]                               |
| <b>t</b> ti               | Thickness of the thermal insulation [mm]                                                           |
| β                         | Coefficient of the embedment strength of the rafter to the batten [ - ]                            |

with  $\beta = \frac{f_{h,r,k}}{f_{h,b,k}}$ 

fischer PowerFast II

Fixations of on-roof insulation

#### FAFS-Clip of adjustable frame screw: Installations of ceilings or technical shells

The FAFS-Clip has to be used in combination with fischer PowerFast II – Chipboard screws with d=5 mm and countersunk head geometry (see Annex A1). It should be considered that the screw-in direction referred to the load direction (see Figure F1.1) is  $0 \pm 5^{\circ}$ . Horizontal loads which also effects bending moments of the screws should be avoided or otherwise transferred with additional slanted screws.



Figure F1.1: Installation of a ceiling or technical shell with the FAFS-Clip (figure not to scale)

The load-carrying capacity for acting loads  $q_{Ed}^{(+)}$  can be calculated like following:

$$q_{Ed}^{(+)} \cdot e \le \min \begin{cases} F_{ax,Rd} \\ F_{FAFS,t,Rd} \end{cases}$$
(56)

With

 $F_{ax,Rd}$ According to Table D10.1 for screws in Annex A1 with d = 5,0 mm $F_{FAFS,t,Rd}$ According to Table D16.2 for FAFS-Clip in Annex A12

The load carrying capacity for acting loads q<sub>Ed</sub><sup>(-)</sup> should be calculated like shown below

$$q_{Ed}^{(-)} \cdot e \le \min \begin{cases} F_{ax,Rd} \\ F_{ki,Rd} \\ F_{FAFS,c,Rd} \end{cases}$$
(57)

With

 $F_{ax,Rd}$ According to Table D10.1 for screws in Annex A1 with d = 5,0 mm $F_{FAFS,c,Rd}$ According to Table D16.2 for FAFS-Clip in Annex A12

and

 $F_{ki,Rd} = \kappa_c \cdot N_{pl,d}$ (58)

where

$$\kappa_{c} = 1 \qquad \text{for } \overline{\lambda} \le 0,2$$

$$\kappa_{c} = \frac{1}{k + \sqrt{k^{2} - \overline{\lambda}^{2}}} \qquad \text{for } \overline{\lambda} > 0,2 \qquad (59)$$

# FAFS-Clip of adjustable frame screw: Installations of ceilings or technical shells

with

$$k = 0, 5 \cdot \left[ 1 + 0, 49 \cdot \left( \overline{\lambda} - 0, 2 \right) + \overline{\lambda}^2 \right]$$
(60)

The relative slenderness ratio shall be calculated with

$$\overline{\lambda} = \frac{4 \cdot L_{cr}}{\pi \cdot (0, 7 \cdot d)} \cdot \sqrt{\frac{f_{y,k}}{E_s}}$$
(61)

With the characteristic value for the axial capacity in case of plastic analysis referred to the diameter

$$N_{pl,k} = \frac{(0,7 \cdot d)^2 \cdot \pi}{4} \cdot f_{y,k}$$
(62)

For screws with a diameter of 5 mm, according to Annex A1

$$N_{pl,k} = 8710 \text{ N}$$
 (63)

And the buckling length  $L_{cr}$  on the side of the screw tip with a minimum penetration depth of  $8 \cdot d$ 

$$L_{cr} = 0, 7 \cdot l_d \tag{64}$$

Where

| d<br>e<br>Es                  | Nominal diameter of the screw [mm]<br>Effective distance (supporting points) between parallel arranged screws [m]<br>Modulus of elasticity of the screw [N/mm²], see Annex C |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F <sub>ax,Rd</sub>            | Design withdrawal capacity of the screw in the structural timber<br>element (2) [N], see Annex D10.1                                                                         |
| <b>F</b> <sub>FAFS,t,Rd</sub> | Design head pull-through capacity of the FAFS-Clip in timber part (1) for tension forces [N], see Annex D16                                                                  |
| <b>F</b> <sub>FAFS,c,Rd</sub> | Design head push-through capacity of the FAFS-Clip in timber part (1) for compression forces [N], see Annex D16                                                              |
| L <sub>cr</sub>               | Buckling length of the screw [mm]                                                                                                                                            |
| l <sub>d</sub>                | Distance between (1) and (2) [mm]                                                                                                                                            |
| $N_{pl,k}$                    | Characteristic axial capacity in case of plastic analysis [N]                                                                                                                |
| $q_{Ed}^{(+)}$                | Design load effecting tension loads on the installation element (1) [N/m]                                                                                                    |
| $q_{Ed}^{(-)}$                | Design load effecting compression loads on the installation element (1) [N/m]                                                                                                |

Note: The compressive capacity must be modified for  $f_{ax,d}$  with the factors  $k_{mod}$  and  $\gamma_M$  for timber according to EN 1995-1-1, while  $N_{pl,d}$  the partial-factor  $\gamma_{M,1}$  for steel buckling according to EN 1993-1-1 and/or national standards must be considered.

fischer PowerFast II

**FAFS-Clip Applications** 

#### **Examples of different Façade Systems**

Type of »fischer PowerFast II« screws have to be selected based on the loads, base materials and geometric boundaries.

#### Example: PowerFast II used as substrate fixings





e.g. fischer BWM facade system AKT 100

e.g. fischer BWM facade system AKT 100 Zela



e.g. fischer BWM facade system AKT 103

Example: PowerFast II used as subframe fixings











Figure H2.1: Shear connection with inclined screws timber-to-timber connection (figure not to scale)

The load-carrying capacity

$$F_{\nu,Rk} = \frac{1}{\sqrt{\left(\frac{\cos\alpha}{F_{\nu,Rk}}\right)^2 + \left(\frac{\sin\alpha}{F_{ax,Rk}}\right)^2}}$$
(66)

The slip modulus, see also Annex D20 to D22

$$K_{ser} = K_{v,ser} \cdot \cos \alpha \cdot (\cos \alpha - \mu \cdot \sin \alpha) + K_{ax,ser} \cdot \sin \alpha \cdot (\sin \alpha + \mu \cdot \cos \alpha)$$
(67)

For cross coupled screws the friction should not be considered, which leads to

$$K_{ser} = K_{v,ser} \cdot \cos^2 \alpha + K_{ax,ser} \cdot \sin^2 \alpha$$
(68)

Considering the deformations in both parts leads to the total slip modulus

$$K_{v,tot,ser} = \frac{1}{\frac{1}{K_{ax,ser,1}} + \frac{1}{K_{ax,ser,2}}}$$
(69)

Where

| d<br>F <sub>v,Rk</sub><br>F <sub>ax,Rk</sub><br>K <sub>ax,ser</sub><br>K <sub>v,ser</sub> | Outer thread diameter of the screw [mm]<br>Characteristic load-carrying capacity of a screw each shear plane [N]<br>Withdrawal capacity of the screw [N], see Annex D<br>Slip modulus parallel to the screw axis in the serviceability limit state [N/n<br>Slip modulus perpendicular to the screw axis in the serviceability limit stat<br>[N/mm]<br>Angle between screw axis and grain-direction [°]<br>Coefficient of friction, if permanent compression forces between the timber<br>elements can be ensured $\mu = 0,25$ | te            |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                                                                                           | fischer PowerFast II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Annex H2      |
|                                                                                           | Inclined screws for timber-to-timber connections                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (informative) |



- Connections with side members of timber elements – simplified rules for laterally loaded screws



Figure J1.1: Fire design for unprotected screws – laterally loaded (figures not to scale)

The fire resistance of unprotected timber-to-timber joints with screws with  $d \ge 3,5$  mm where spacing, edge and end distances and side member dimensions comply with minimum requirements given in EN 1995-1-1 have a fire resistance of

$$t_{d,fi} = 15 \text{ min}$$
 (70)

For connections with non-protruding heads, the fire resistance periods  $t_{d,fi}$  can be extended by increasing the following dimensions with  $a_{fi}$  to a maximum of 30 minutes.

- The thickness of the side members
- The width of the side members
- The end- and edge distances of the screws

With

$$a_{fi} = 1, 5 \cdot \beta_n \cdot (t_{req} - t_{d,fi}) \tag{71}$$

fischer PowerFast II

Fire design for unprotected screws – laterally loaded

Annex J1 (informative)

# Fire Design of PowerFast II screws for the structural use in timber constructions according to EN 1995-1-2

The values for the design notional charring rate  $\beta_n$  under standard fire exposure are given below.

#### Table J2.1: Notional charring rate

| Material                                                                                       | β <sub>n</sub><br>[mm/min] |
|------------------------------------------------------------------------------------------------|----------------------------|
| Softwood and beech                                                                             |                            |
| Glued Laminated Timber with a characteristic density of $\ge$ 290 kg/m <sup>3</sup>            | 0,70                       |
| Solid Timber with a characteristic density of $\geq$ 290 kg/m <sup>3</sup>                     | 0,80                       |
| Hardwood                                                                                       |                            |
| Solid or Glued Laminated hardwood with a characteristic density of $\ge$ 290 kg/m <sup>3</sup> | 0,70                       |
| Solid or Glued Laminated hardwood with a characteristic density of $\ge$ 450 kg/m <sup>3</sup> | 0,55                       |
| LVL                                                                                            |                            |
| LVL with a characteristic density of $\geq$ 480 kg/m <sup>3</sup>                              | 0,70                       |

# b) Protected connections



Figure J2.1: Fire design for protected screws – laterally loaded (figures not to scale)

If the construction is protected by the addition of wood panelling, wood-based panels or gypsum plasterboards type *A* or *H* or other fire protection panels with an ETA including fire resistance, the time until start of charring should satisfy

$$t_{ch} \ge t_{req} - 0.5 \cdot t_{d,fi}$$
 (72)



# Fire Design of PowerFast II screws for the structural use in timber constructions according to EN 1995-1-2

If the connection is protected by the addition of gypsum plasterboard type F, the time until start of charring should satisfy equation (73).

$$t_{ch} \ge t_{req} - 1, 2 \cdot t_{d,fi} \tag{73}$$

For connections where the screws are protected by glued-in timber plugs, the length of the plugs should be determined according to

$$a_{fi} = 1, 5 \cdot \beta_n \cdot (t_{req} - t_{d,fi}) \tag{74}$$

The fixings of the additional protection should prevent its premature failure. Additional protection provided by wood-based panels or gypsum plasterboards should remain in place until charring of the member starts ( $t = t_{ch}$ ). Additional protection provided by gypsum plasterboards type *F* should remain in place during the required fire resistance period ( $t = t_{req}$ ).

The following rules apply for the fixing of additional protections by screws:

- The distance between the screws should be not more than 100 mm along the board edges and not more than 300 mm for fastenings within the area of the boards

- The edge distance of fasteners should be equal or greater than a<sub>fi</sub>, calculated using expression

$$a_{fi} = 1, 5 \cdot \beta_n \cdot (t_{req} - t_{d,fi}) \tag{75}$$

The penetration depth of the screws for fixing the additional protection made of wood, wood-based panels or gypsum plasterboards type A or H should be at least  $6 \cdot d$ .

For gypsum plasterboards type F, the penetration length into unburnt wood (that is beyond the charline) should be at least 10 mm (see also EN 1995-1-2).

Where

- *a*<sub>fi</sub> Extra thickness of member to improve the fire resistance [mm]
- *t*<sub>req</sub> Required time of fire resistance [min]
- *t*<sub>d,fi</sub> Time of the fire resistance of the unprotected connection [min]
- $\beta_n$  Notional charring rate [mm/min]

#### fischer PowerFast II

Annex J3 (informative)

Fire design for unprotected screws – laterally loaded

# Fire Design of PowerFast II screws for the structural use in timber constructions according to EN 1995-1-2

- Simplified rules for axially loaded screws



Figure J4.1: Fire design for axially loaded screws (figure not to scale)

For axially loaded screws which are protected from direct fire exposure, the design resistance of the screws should be calculated with

$$F_{ax,d,t,fi} = \eta \cdot \frac{1,05 \cdot F_{ax,Rk}}{\gamma_{M,fi}}$$
(76)

For connections where the distances  $a_2$  and  $a_3$  of the screws satisfy the equations (77), the conversion factor  $\eta$  for the reduction of the axial resistance of the screw in the fire situation should be calculated with equation (78).

$$a_2 \ge a_1 + 40 a_3 \ge a_1 + 20$$
(77)

$$\eta = \begin{cases} 0 & \text{for } \mathbf{a}_{1} \leq 0, 6 \cdot t_{d,fi} \\ \frac{0, 44 \cdot a_{1} - 0, 264 \cdot t_{d,fi}}{0, 2 \cdot t_{d,fi} + 5} & \text{for } 0, 6 \cdot t_{d,fi} \leq \mathbf{a}_{1} \leq 0, 8 \cdot t_{d,fi} + 5 \\ \frac{0, 56 \cdot a_{1} - 0, 36 \cdot t_{d,fi} + 7, 32}{0, 2 \cdot t_{d,fi} + 23} & \text{for } 0, 8 \cdot t_{d,fi} + 5 \leq \mathbf{a}_{1} \leq t_{d,fi} + 28 \\ 1, 0 & \text{for } \mathbf{a}_{1} \geq t_{d,fi} + 28 \end{cases}$$
(78)

#### Where

| <b>a</b> <sub>1</sub> , <b>a</b> <sub>2</sub> , <b>a</b> <sub>3</sub> | Distances and spacing of the screws [mm]                                                    |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| t∕d,fi                                                                | Time of the fire resistance of the unprotected connection [min]                             |
| F <sub>ax,Rk</sub>                                                    | Characteristic withdrawal strength [N]                                                      |
| F <sub>ax,d,t,fi</sub>                                                | Design value of the withdrawal strength in the fire situation [N]                           |
| 2∕M,fi                                                                | Partial factor for timber in the case of fire, see national regulations                     |
|                                                                       | (in absence of other national regulations, a partial factor for the resistance              |
|                                                                       | $\gamma_{M,fi}$ =1,0 under fire impact is recommended) [-]                                  |
| η                                                                     | Conversion factor for the reduction of the load-bearing capacity in the<br>case of fire [-] |
|                                                                       |                                                                                             |

fischer PowerFast II

Fire design for protected screws - axially loaded

#### Screw gluing methods

Screw gluing methods are only allowed for the usage in serviceability class 1 and 2 according to EN 1995-1-1



Figure K1.1: Arrangement of screws for screw-gluing (figure not to scale)

Note: The figure above is a vertical section and the distances between each screw row for assembling must be  $\ge a_2$ . For additional layers above, screws must have a distance of at least 3·d in grain direction to screw rows below. For additional information about the configuration see also figures in Annex K2.

Legend

| (1)        | fischer PowerFast II                  | d           |
|------------|---------------------------------------|-------------|
|            | partial threaded screw                |             |
| (2)        | Bonded part                           | ls          |
| (3)        | Glue joint                            | <b>I</b> gf |
| $t_1, t_2$ | Thickness of the gluing parts         | <b>d</b> h  |
| <b>a</b> 1 | Spacing of the screws parallel to the | <b>a</b> 3, |
|            | grain in a row                        |             |

Nominal diameter of the screw

Screw length

- Threaded length (Igp for partial-threaded screws)
- *d*<sub>h</sub> Head diameter
- *a*<sub>3,c</sub> Distance of the screw to the unloaded end grain

The shown applications for screw-bonding applies only for structures in serviceability class 1 and 2 according to EN 1995-1-1. The use of an adhesive with joint filling properties is necessary. If the joint thickness of a maximum of 0,3 mm can be ensured, adhesives according to EN 15425 and adhesives type I may also be used according to EN 301. The adhesive manufacturer's instructions must be fulfilled. Only »fischer PowerFast II« screws with washer or step countersunk heads (see Annex A5, A6, A8, A9) with a nominal diameter  $d \ge 5$  mm should be used.

In the use of partial-threaded screws, no part of the thread should be in the bonded part. When using fully threaded screws, the glued part must be pre-drilled with a borehole of at least d + 1,0 mm. The upper side of the screw head or the washer, must be countersunk at least 2 mm from the surface of the glued part. The figure above shows the different options for installing the partial threaded screws of the assembling structural elements.

fischer PowerFast II

Screw-Gluing

The minimum spacing for connections with axially loaded screws must be observed. The maximum distance in the adhesive surface to the ends of the components must be  $a_{3,c} \le 10 \cdot d$ , and to the edges  $a_{4,c} \le 5 \cdot d$ . With a single-row screw connection, the rib width  $b_{rib}$  may not be larger than  $d_h + 2 \cdot t_1$ , otherwise a multi-row screw connection must be carried out.





Figure K2.1: Arrangement of screws for screw-gluing of ribbed panels (figure not to scale)

#### Legend

- (1) Partial threaded screw with washer
- (2) Panel
- (3) Glue joint
- (4) Rib (timber beam)
- a<sub>1</sub> Spacing of the screws parallel to the grain in a row
- $a_1^*$  Reduced spacing of the screw parallel to the grain in a row to ensure a distance of  $a_1/2$  between adjoining screw rows
- *a*<sub>2</sub> Spacing of the screws perpendicular to the grain direction

- *a*<sub>3,c</sub> Distance to the unloaded end grain
- *a*<sub>4,c</sub> Distance to the unloaded edge
- *d* Nominal diameter of the screw
- *I*s Screw length
- $t_1$  Thickness of the bonded panel
- *b*<sub>rip</sub> Width of the beam web
- *d*<sub>h</sub> Head diameter
- *l*gf Threaded length (*l*gp for partial-threaded screws)

# fischer PowerFast II Annex K2 (informative)

The surfaces of the bonded parts must be suitable for bonding and are in accordance to the requirements of the adhesive manufacturer. In general, the finishes needed to be sanded or smoothed planed and without coatings, dirt, dust and impurities.

The tolerance of the joint thickness of the assembling parts must fulfil the tolerances for

- Beam- and plate-shaped screw-gluing: max. 1 mm per 1 m
- Ribbed panels: max. 2 mm per 2 m

If several layers are glued together, each layer must be screwed-on separately. The screws must be arranged staggered (see also figure Annex K1.1, and figure Annex K2.1 right below), to apply enough pressure in all joints. In the intermediate layers, the screw heads should not protrude the surface of the intermediate layer.

Deformations and movements that lead to damages of the adhesive-joints have to be avoided. The screw parameters and distances depend on the thickness of the assembling parts, given in the table below.

|                                                                 |                                      |                                       |                                     | Maximum screw spacings                                      |                                                                     | Length                                                           |                                                 |
|-----------------------------------------------------------------|--------------------------------------|---------------------------------------|-------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|
| Material<br>bonded part                                         | Thickness<br>bonded<br>part          | Recommended<br>nominal<br>diameter    | Min.<br>nominal<br>head<br>diameter | Parallel to the<br>grain direction<br>of the outer<br>layer | Perpendicular<br>to the grain<br>direction of<br>the outer<br>layer | of the<br>threaded<br>screw part<br>in the<br>structural<br>part | Calculated<br>compressive<br>stress<br>Pcal,min |
|                                                                 | [mm]                                 | [mm]                                  | [mm]                                | [mm]                                                        | [mm]                                                                | [mm]                                                             | [N/mm²]                                         |
| Beam- and panel s                                               | shaped screw-                        | gluing                                |                                     |                                                             |                                                                     |                                                                  | -                                               |
| LVL of softwood,<br>three-layered<br>solid timber<br>panel, OSB | 12 ≤ <i>t</i> < 19                   | ≥ 5<br>e.g. Annex A5,<br>A6, A8, A9   | 9,8                                 | 100                                                         | 65                                                                  | 6∙ <i>d</i>                                                      |                                                 |
| LVL beech                                                       |                                      | 710,710,710                           |                                     | 100                                                         | 100                                                                 | 8· <i>d</i>                                                      | -                                               |
| Lamellas and<br>one-layered<br>solid timber<br>panels           |                                      | ≥6                                    | 10,8                                | 140                                                         | 65                                                                  | 6∙d                                                              | 0,10                                            |
| LVL in spruce<br>three-layered<br>solid timber<br>panel, OSB    | 19 ≤ <i>t</i> < 27                   | e.g. Annex A5,<br>A6, A8, A9          | Washer,<br>e.g.<br>Annex<br>A13     | 140                                                         | 90                                                                  | 6∙ <i>d</i>                                                      |                                                 |
| LVL beech                                                       |                                      |                                       | 10,8                                | 140                                                         | 140                                                                 | 8∙d                                                              |                                                 |
| SWB, PLY-c,<br>OSB, LVL                                         | 27 ≤ <i>t</i> < 42                   | ≥ 8<br>e.g. Annex A8,                 | 19,2                                | 175                                                         | 100                                                                 | 6· <i>d</i>                                                      | 0,15                                            |
| PLY-beech                                                       |                                      | A9                                    |                                     | 175                                                         | 175                                                                 | 15∙d                                                             |                                                 |
| 3-layered SWB<br>panel, LVL                                     | 42 ≤ <i>t</i> ≤ 60                   | ≥ 8<br>e.g. Annex A8,                 | 19,2                                | 225                                                         | 100                                                                 | 6∙ <i>d</i>                                                      |                                                 |
| PLY-beech                                                       |                                      | A9                                    |                                     | 250                                                         | 250                                                                 | 15∙d                                                             |                                                 |
| Ripped Panels                                                   |                                      |                                       |                                     |                                                             |                                                                     |                                                                  |                                                 |
|                                                                 | 60 ≤ <i>tcL</i><br>< 100             | ≥ 8<br>e.g. Annex A7                  | 30                                  | 225                                                         | 160                                                                 | 10· <i>d</i>                                                     | 0,18                                            |
| CLT with GLT                                                    | 100 ≤ <i>t<sub>CL</sub></i><br>≤ 200 | with Washer<br>A13 +<br>(EN ISO 7094) | 45                                  | 250                                                         | 200                                                                 | 15∙ <i>d</i>                                                     | 0,25                                            |

Table K3.1: Properties of the bonded parts, screw parameters and compressive stress

fischer PowerFast II

As an alternative to the specifications in the Table K3.1, the maximum screw spacing can also be determined with the empirical equation (79).

$$a_{i,max} = 3,35 \cdot \sqrt[4]{E_{mean,i} \cdot I_{i,b=1}}$$
(79)

with *i* = 1 or 2

In addition, it must be proven, that the calculated minimum compressive stress per screw is observed.

$$\frac{F_{ax,Rd}}{a_1 \cdot a_2} \ge p_{cal,min} \tag{80}$$

Where

| <b>a</b> <sub>i,max</sub> | Maximum spacing of the screws in i-direction [mm]                                                  |
|---------------------------|----------------------------------------------------------------------------------------------------|
| $I_{i.b=1}$               | Moment of inertia in <i>i</i> -direction for a width of 1 mm of the bonded part [mm <sup>4</sup> ] |
| E <sub>mean,i</sub>       | Modulus of elasticity in i-direction of the bonded part [N/mm <sup>2</sup> ]                       |
| <b>a</b> <sub>i,max</sub> | Maximum spacing of the screws [mm]                                                                 |
| F <sub>ax,Rd</sub>        | Design withdrawal strength of the screw [N]                                                        |
| <b>p</b> cal,min          | Minimum calculated compressive stress according to Annex K3                                        |

For the characteristic head pull-through parameter  $f_{head,k}$  the following models can be used:

- Screws with glued parts made of solid timber and wood-based materials in softwood with

$$f_{head,k} = 14 \cdot d_{h}^{-0.14} \cdot \left(\frac{\rho_{k}}{\rho_{a}}\right)^{0.8}$$
(81)

- Screws with glued parts made of LVL in beech with

$$f_{head,k} = 25 \text{ N/mm}^2$$
(82)

For the decrease in the pressure until the adhesive hardens, one should consider in the calculation model with  $k_{\text{mod}} = 1,0$  and  $\gamma_{\text{M}} = 1,3$ . Table in K3.1 is based on these model assumptions. After the required bond strength has been reached, the screws can be unscrewed.

#### fischer PowerFast II

Screw-Gluing

Annex K4 (informative)

#### Supporting plates to restrain screw heads

Metric screws with hexagon head, countersunk head or cylindric head or threaded rods with nut and washer – each according to the structural requirements – at least  $2 \times M8$  ( $\geq 4.6$  respectively A2-50) for the connection of the two plates made of aluminium (mechanical properties at least like e.g. EN AW 6082, EN AW 5083, EN AW 6060 or EN AC-44100); made of carbon steel or made of stainless steel (each at least S235).



Figure L1.1: Screw head supporting plate for fischer PowerFast II screws (figure not to scale)

For screws loaded in compression which are not completely embedded in timber, values from Table L1.1 can be used for the critical buckling load in combination with screw head supporting plates shown in Figure L1.1.

**Table L1.1:** Design buckling capacities  $F_{b,Rd}$  in [kN] for screws with a free screw length protruding from the timber member including the screw head and the screw fixed between two metal plates where distortion and displacement of the screw head perpendicular to the buckling loads of the screw head are not possible, referred to a minimum gross density of the timber member of 350 kg/m<sup>3</sup> and a partial factor of  $\gamma_{M,1}=1,1$ 

| Nominal diameter [mm] |                                                                              |  |
|-----------------------|------------------------------------------------------------------------------|--|
| 8,0                   | 10,0                                                                         |  |
| 11,12                 | 18,52                                                                        |  |
| 8,91                  | 15,26                                                                        |  |
| 7,23                  | 12,62                                                                        |  |
| 5,96                  | 10,53                                                                        |  |
| 4,98                  | 8,87                                                                         |  |
| 4,21                  | 7,56                                                                         |  |
| 3,61                  | 6,51                                                                         |  |
| 3,12                  | 5,65                                                                         |  |
| 2,73                  | 4,96                                                                         |  |
| 2,40                  | 4,38                                                                         |  |
|                       | 8,0<br>11,12<br>8,91<br>7,23<br>5,96<br>4,98<br>4,21<br>3,61<br>3,12<br>2,73 |  |

<sup>1)</sup> For free screw lengths ≤ 120 mm, buckling is not decisive

#### fischer PowerFast II

Annex L1 (informative)

Screw Head Supporting Plates