

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-02/0024 vom 13. Februar 2017

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Injektionssystem fischer FIS V

Verbunddübel zur Verankerung im Beton

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

29 Seiten, davon 3 Anhänge

Leitlinie für die europäische technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 5: "Verbunddübel", April 2013,

verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.

ETA-02/0024 vom 17. Juni 2016

Europäische Technische Bewertung ETA-02/0024

Seite 2 von 29 | 13. Februar 2017

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z2698.17 8.06.01-196/16

Europäische Technische Bewertung ETA-02/0024

Seite 3 von 29 | 13. Februar 2017

Besonderer Teil

1 Technische Beschreibung des Produkts

Das fischer Injektionssystem FIS V ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel fischer FIS V und einem Stahlteil nach Anhang A2 besteht.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Werte für statische und quasistatische Einwirkungen, Verschiebungen	Siehe Anhang C 1 bis C 9
Charakteristische Werte für die seismischen Leistungskategorien C1 und C2, Verschiebungen	Siehe Anhang C 10 bis C 12

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Keine Leistung bestimmt

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Bezüglich gefährlicher Stoffe können die Produkte im Geltungsbereich dieser Europäischen Technischen Bewertung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Verordnung (EU) Nr. 305/2011 zu erfüllen, müssen gegebenenfalls diese Anforderungen ebenfalls eingehalten werden.

3.4 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

Z2698.17 8.06.01-196/16

Europäische Technische Bewertung ETA-02/0024

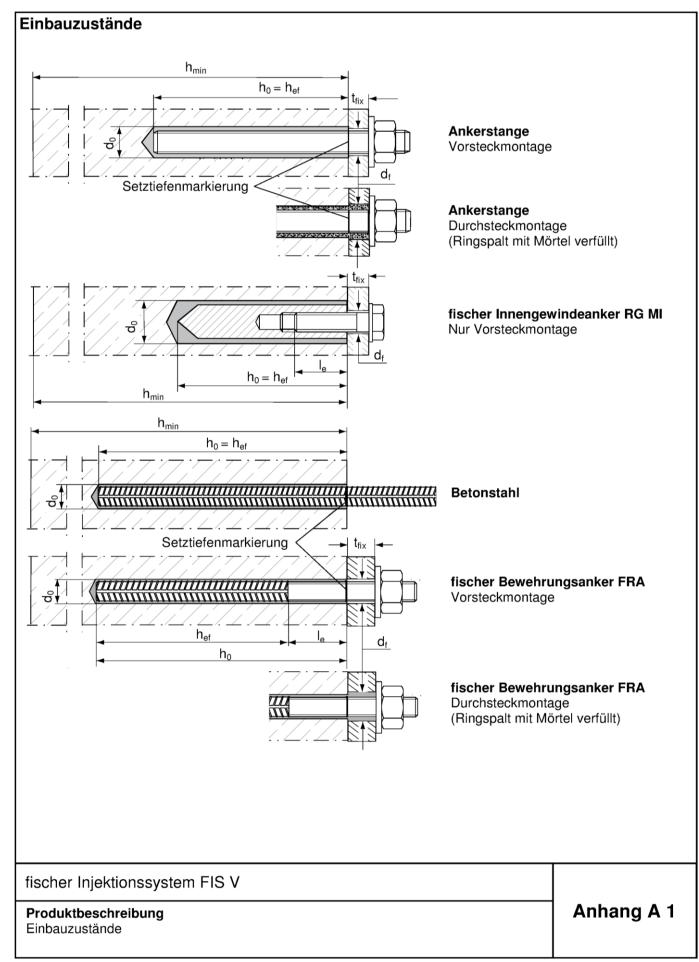
Seite 4 von 29 | 13. Februar 2017

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

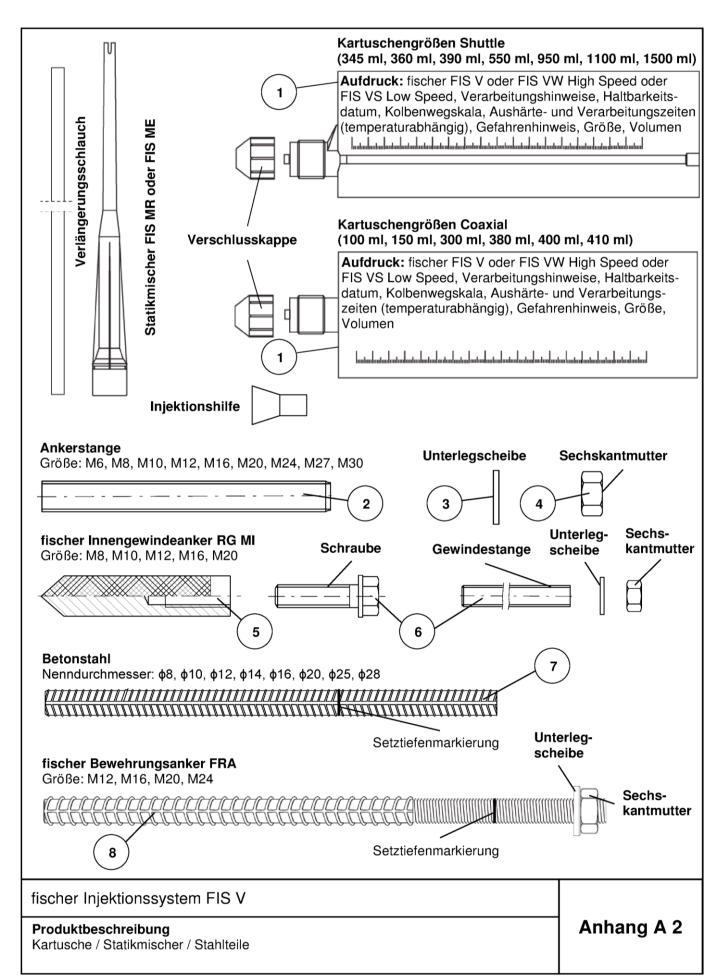
Gemäß der Leitlinie für die europäische technische Zulassung ETAG 001, April 2013 verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument


Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 13. Februar 2017 vom Deutschen Institut für Bautechnik


Uwe Bender Abteilungsleiter Beglaubigt

Z2698.17 8.06.01-196/16

Teil	Bezeichnung		Mat	erial	
1	Mörtelkartusche		Mörtel, Härt	ter, Füllstoffe	
	Stahlart	Stahl, verzinkt	l	ender Stahl N4	Hochkorrosions- beständiger Stahl C
2	Ankerstange		$50, 70$ EN ISO 39 1.4401; 1.4 1.4571; 1.4 1.4062, 1.4 EN 1008 $f_{uk} \le 100$ $A_5 > Brucho$ $A_5 > 8 %, we$	eitsklasse oder 80 506-1:2009 404; 1.4578; 439; 1.4362; 662, 1.4462 88-1:2014 00 N/mm ² 12 % dehnung enn keine Anfo skategorie C2 b	
3	Unterlegscheibe ISO 7089:2000	verzinkt ≥ 5 μm, EN ISO 4042:1999 A2K oder feuerverzinkt EN ISO 10684:2004	1.4565;1.4529 EN 10088-1:2014		
4	Sechskantmutter	Festigkeitsklasse 5 oder 8; EN ISO 898-2:2012 verzinkt ≥ 5 µm, ISO 4042:1999 A2K oder feuerverzinkt EN ISO 10684:2004	50, 70 EN ISO 3! 1.4401; 1.4 1.4571; 1.4	eitsklasse oder 80 506-1:2009 404; 1.4578; 439; 1.4362 38-1:2014	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
5	fischer Innengewindeanker RG MI	Festigkeitsklasse 5.8 ISO 898-1:2013 verzinkt ≥ 5 µm, ISO 4042:1999 A2K	EN ISO 35 1.4401; 1.4 1.4571; 1.4	eitsklasse 70 506-1:2009 404; 1.4578; 439; 1.4362 38-1:2014	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
6	Handelsübliche Schraube oder Anker-/ Gewindestange für fischer Innengewinde- anker RG MI	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1:2013 verzinkt \geq 5 μ m, ISO 4042:1999 A2K $A_5 > 8$ % Bruchdehnung	EN ISO 35 1.4401; 1.4 1.4571; 1.4 EN 1008	eitsklasse 70 506-1:2009 404; 1.4578; 439; 1.4362 38-1:2014 ruchdehnung	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014 A ₅ > 8 % Bruchdehnung
7	Betonstahl EN 1992-1-1:2004 und AC:2010, Anhang C	Stäbe und Betonstahl vom f_{yk} und k gemäß NDP oder I $f_{uk} = f_{tk} = k \cdot f_{yk}$			+ AC:2010
8	fischer Bewehrungsanker FRA	Betonstahlteil: Stäbe und Betonstahl vom B oder C mit f_{yk} und k gemä NDP oder NCL der EN 1992-1-1:2004 + AC:20 $f_{uk} = f_{tk} = k \cdot f_{yk}$	EN ISO 3506- 1.4565; 1.452	9, 1.4401, 1.4404, 1.4571 9, 1.4362, 1.4062	
Prod	ner Injektionssystem duktbeschreibung erialien	FIS V			Anhang A 3

Z7251.17 8.06.01-196/16

Spezifizierung des Verwendungszwecks (Teil 1)

Tabelle B1: Übersicht Nutzungs- und Leistungskategorien

Beanspruchung	der				FIS	S V mit					
Verankerung		Anker	stange	Innengew	her indeanker i MI		nstahl	Bewehru	cher ngsanker RA		
					1						
Hammerbohren mit Standardbohrer	p4444000000000000000000000000000000000				alle G	rößen					
Hammerbohren mit Hohlbohrer (Heller "Duster Expert" oder Hilti "TE-CD, TE-YD")	<u> </u>		Bohrernenndurchmesser (d ₀) 12 mm bis 35 mm								
Statische und guasi-statische	ungerissenen Beton	alle Größen	Tabellen:	alle Größen	Tabellen: C2, C5,	alle Größen	Tabellen: C3, C5,	alle	Tabellen: C4, C5,		
Belastung, im	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		C6, C10	nicht bewertet	C7, C11	φ10 bis φ28	C8, C12	Größen	C9, C13		
Seismische Leistungs- kategorie (nur Hammer-	C1 ¹⁾	M10 bis M30	Tabellen: C14, C15, C16								
bohren mit Standardbohrer / Hohlbohrer)	C2 ¹⁾	M12, M16, M20	Tabellen: C14, C15, C17	_		-					
Nutzungs-	Trockener oder nasser Beton				alle G	rößen					
kategorie	Wasser- gefülltes Bohrloch	M12 bis M30 alle Größen nicht bewertet nicht bev							ewertet		
Einbau- temperatur		-10 °C bis +40 °C									
Gebrauchs- temperatur-	Temperatur- bereich I	-40 °C b			e Langzeitt Kurzzeitte			nd			
bereiche	Temperatur- bereich II										

¹⁾ Nicht für FIS VW High Speed und FIS VS Low Speed

fischer Injektionssystem FIS V

Verwendungszweck
Spezifikationen (Teil 1)

Anhang B 1

Z7251.17 8.06.01-196/16

Spezifizierung des Verwendungszwecks (Teil 2)

Verankerungsgrund:

 Bewehrter oder unbewehrter Normalbeton der Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206-1:2000

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl)
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl)
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl)

Anmerkung: Aggressive Bedingungen sind z. B. ständiges, abwechselndes Eintauchen in Meerwasser oder der Bereich der Spritzzone von Meerwasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden)

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. Auf den Konstruktionszeichnungen ist die Lage der Dübel angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern)
- Die Bemessung der Verankerungen unter statischer oder quasi-statischer Belastung wird durchgeführt in Übereinstimmung mit: EOTA Technical Report TR 029 "Bemessung von Verbunddübeln", Fassung September 2010 oder CEN/TS 1992-4:2009
- Verankerungen unter seismischer Einwirkung (gerissener Beton) werden bemessen in Übereinstimmung mit:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Die Verankerungen sind außerhalb kritischer Bereiche (z. B. plastische Gelenke) der Betonkonstruktion anzuordnen
 - Eine Abstandsmontage oder die Montage auf M\u00f6rtelschicht ist f\u00fcr seismische Einwirkungen nicht erlaubt

Einbau:

- Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters
- · Im Fall von Fehlbohrungen sind diese zu vermörteln
- · Effektive Verankerungstiefe markieren und einhalten
- Überkopfmontage erlaubt

fischer Injektionssystem FIS V

Verwendungszweck
Spezifikationen (Teil 2)

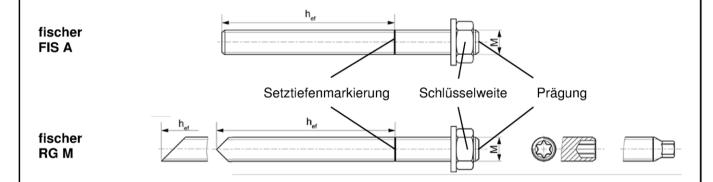

Anhang B 2

Tabelle B2: Mon	tagekennw	erte fü	r Anke	erstanç	gen							
Größe				М6	M8	M10	M12	M16	M20	M24	M27	M30
Schlüsselweite		SW		10	13	17	19	24	30	36	41	46
Bohrernenn- durchmesser		d ₀		8	10	12	14	18	24	28	30	35
Bohrlochtiefe		h_0						$h_0 = h_{ef}$				
Effektive		$h_{\text{ef},\text{min}}$		50	60	60	70	80	90	96	108	120
Verankerungstiefe		$h_{\text{ef,max}}$		72	160	200	240	320	400	480	540	600
Minimaler Achs- und Randabstand		S _{min} = C _{min}	[mm]	40	40	45	55	65	85	105	125	140
Durchmesser des Durchganglochs im	Vorsteck- montage	d _f		7	9	12	14	18	22	26	30	33
Anbauteil ¹⁾	Durchsteck- montage	d _f		9	11	14	16	20	26	30	32	40
Mindestdicke des Betonbauteils		h _{min}				- 30 00)			ŀ	n _{ef} + 2d	0	
Maximales Montage- drehmoment		$T_{inst,max}$	[Nm]	5	10	20	40	60	120	150	200	300

¹⁾ Für größere Durchgangslöcher im Anbauteil siehe TR 029, 4.2.2.1 oder CEN/TS 1992-4-1:2009, 5.2.3.1

Ankerstangen:

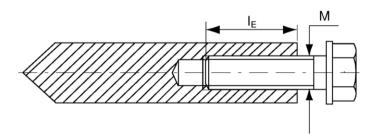
Prägung (an beliebiger Stelle):

Festigkeitsklasse 8.8 oder hochkorrosionsbeständiger Stahl, Festigkeitsklasse 80: • Nichtrostender Stahl A4, Festigkeitsklasse 50 und hochkorrosionsbeständiger Stahl, Festigkeitsklasse 50: • • Oder Farbmarkierung nach DIN 976-1

Handelsübliche Gewindestangen, Unterlegscheiben und Sechskantmuttern dürfen ebenfalls verwendet werden, wenn die folgenden Anforderungen erfüllt werden:

- Materialien, Abmessungen und mechanische Eigenschaften gemäß Anhang A 3, Tabelle A1
- Prüfzeugnis 3.1 gemäß EN 10204:2004, die Dokumente müssen aufbewahrt werden
- Markierung der Verankerungstiefe

fischer Injektionssystem FIS V	
Verwendungszweck Montagekennwerte Ankerstange	Anhang B 3


Z7251.17 8.06.01-196/16

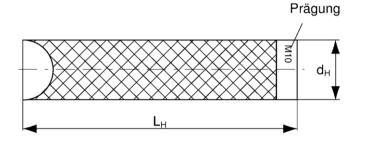


Tabelle B3: Montagekenn	werte fü	r fisch	er Innenge	windeanke	r RG MI		
Größe			M8	M10	M12	M16	M20
Hülsendurchmesser	d_H		12	16	18	22	28
Bohrernenn- durchmesser	d_0		14	18	20	24	32
Bohrlochtiefe	h_0				$h_0 = h_{\text{ef}}$		
Effektive Verankerungstiefe ($h_{ef} = L_{H}$)	h _{ef}		90	90	125	160	200
Minimaler Achs- und Randabstand	S _{min} = C _{min}	[mm]	55	65	75	95	125
Durchmesser des Durchgang- lochs im Anbauteil ¹⁾	d _f		9	12	14	18	22
Mindestdicke des Betonbauteils	h _{min}		120	125	165	205	260
Maximale Einschraubtiefe	I _{E,max}		18	23	26	35	45
Minimale Einschraubtiefe	$I_{E,min}$		8	10	12	16	20
Maximales Montage- drehmoment	T _{inst,max}	[Nm]	10	20	40	80	120

¹⁾ Für größere Durchgangslöcher im Anbauteil siehe TR 029, 4.2.2.1 oder CEN/TS 1992-4-1:2009, 5.2.3.1

fischer Innengewindeanker RG MI

Prägung: Ankergröße

z. B.: **M10**

Nichtrostender Stahl zusätzlich A4 z. B.: M10 A4

Hochkorrosionsbeständiger Stahl

zusätzlich C z. B.: M10 C

Befestigungsschraube oder Ankerstangen / Gewindestangen (einschließlich Mutter und Unterlegscheibe) müssen Anhang A 3, Tabelle A1 entsprechen

fischer Injektionssystem FIS V

Verwendungszweck

Montagekennwerte fischer Innengewindeanker RG MI

Tabelle B4: Montageke	nnwerte	für Be	ton	stah	ıl								
Stabnenndurchmesser		ф	8	¹⁾	10) ¹⁾	12	2 ¹⁾	14	16	20	25	28
Bohrernenn- durchmesser	d ₀		10	12	12	14	14	16	18	20	25	30	35
Bohrlochtiefe	h ₀					$h_0 = h_{ef}$							
Effektive	h _{ef,min}		6	0	6	0	7	0	75	80	90	100	112
Verankerungstiefe	h _{ef,max}	[mm]	16	60	20	00	24	40	280	320	400	500	560
Minimaler Achs- und Randabstand	S _{min} = C _{min}	į ()	40		4	5	5	5	60	65	85	110	130
Mindestdicke des Betonbauteils	h _{min}				ef + 3 ≥ 100					h	_{ef} + 2d ₀		

¹⁾ Beide Bohrernenndurchmesser sind möglich

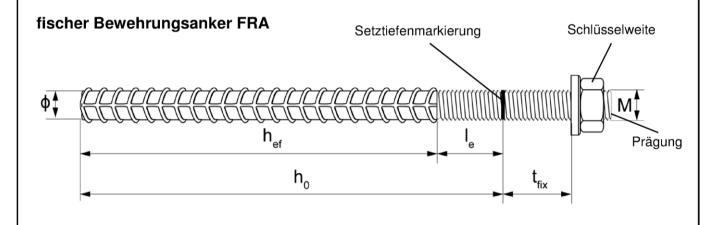
Betonstahl

- Mindestwert der bezogenen Rippenfläche f_{R,min} gemäß Anforderung aus EN 1992-1-1:2009 + AC:2010
- Die Rippenhöhe muss im folgenden Bereich liegen: $0.05 \cdot \phi \le h_{rib} \le 0.07 \cdot \phi$ (ϕ = Stabnenndurchmesser, h_{rib} = Rippenhöhe)

fischer Injektionssystem FIS V

Verwendungszweck

Montagekennwerte Betonstahl


Anhang B 5

Größe				M12 ¹⁾		M16	M20	M24	
Stabnenn- durchmesser		ф		12		16	20	25	
Schlüsselweite		SW		1	9	24	30	36	
Bohrernenn- durchmesser		d ₀		14	16	20	25	30	
Bohrlochtiefe		h ₀				h _{ef}	+ l _e		
Effektive		$h_{\text{ef},\text{min}}$		7	0	80	90	96	
Verankerungstiefe		$h_{\text{ef},\text{max}}$		14	40	220	300	380	
Abstand Betonoberfläche zur Schweißstelle		l _e	[mm]			100			
Minimaler Achs- und Randabstand		S _{min} = C _{min}		5	5	65	85	105	
Durchmesser des Durchganglochs im	Vorsteck- montage	≤ d _f		1	4	18	22	26	
Anbauteil ²⁾	Durchsteck- montage	≤ d _f		1	8	22	26	32	
Mindestdicke des Betonbauteils		h _{min}		h ₀ + 30 (≥ 100)		h ₀ + 2d ₀			
Maximales Montage- drehmoment		T _{inst,max}	[Nm]	40		60	120	150	

¹⁾ Beide Bohrernenndurchmesser sind möglich

²⁾ Für größere Durchgangslöcher im Anbauteil siehe TR 029, 4.2.2.1 oder CEN/TS 1992-4-1:2009, 5.2.3.1

Prägung stirnseitig z. B.: FRA (für nichtrostenden Stahl); FRA C (für hochkorrosionsbeständigen Stahl)

fischer Injektionssystem FIS V

Verwendungszweck
Montagekennwerte fischer Bewehrungsanker FRA

Anhang B 6

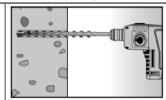
Tabelle B6: Durchmesser der Stahlbürste FIS BS Ø Die Größe der Stahlbürste bezieht sich auf den Bohrernenndurchmesser Bohrernenn-20 24 d_0 8 10 12 14 16 18 25 28 30 35 durchmesser [mm] Stahlbürsten-40 20 25 26 27 30 9 11 14 16 d_b durchmesser

Tabelle B7: Maximale Verarbeitungszeit des Mörtels und minimale Wartezeit (Die Temperatur im Beton darf während der Aushärtung des Mörtels den angegebenen Mindestwert nicht unterschreiten)

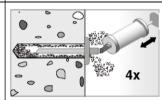
	Maxim	ale Verarbeitur	ngszeit	Minimale Aushärtezeit ¹⁾				
Systemtemperatur		t _{work} [Minuten]		t _{cure} [Minuten]				
[°C]	FIS VW High Speed	FIS V	FIS VS Low Speed	FIS VW High Speed	FIS V	FIS VS Low Speed		
-10 bis -5				12 Stunden				
> -5 bis ±0	5			3 Stunden	24 Stunden			
> ±0 bis +5	5	13		3 Stunden	3 Stunden	6 Stunden		
> +5 bis +10	3	9	20	50	90	3 Stunden		
> +10 bis +20	1	5	10	30	60	2 Stunden		
> +20 bis +30		4	6		45	60		
> +30 bis +40		2	4		35	30		

¹⁾ Im nassen Beton oder wassergefüllten Bohrlöchern sind die Aushärtezeiten zu verdoppeln

fischer Injektionssystem FIS V


Verwendungszweck
Reinigungswerkzeug
Verarbeitungs- und Aushärtezeiten

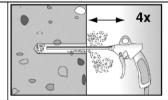
Anhang B 7



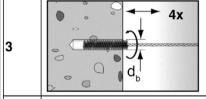
Montageanleitung Teil 1

Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer)

Bohrloch erstellen. Bohrlochdurchmesser d_0 und Bohrlochtiefe h_0 siehe **Tabellen B2, B3, B4, B5**

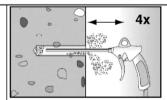


2


4

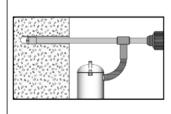
2

Bohrloch reinigen: Bei $h_{ef} \le 12d$ und $d_0 < 18$ mm Bohrloch viermal von Hand ausblasen


Bei $h_{ef} > 12d$ und / oder $d_0 \ge 18$ mm Bohrloch viermal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

Bohrloch viermal ausbürsten. Bei tiefen Bohrlöchern Verlängerung verwenden. Entsprechende Bürsten siehe **Tabelle B6**

Bohrloch reinigen: Bei $h_{ef} \le 12d$ und $d_0 < 18$ mm Bohrloch viermal von Hand ausblasen


Bei $h_{ef} > 12d$ und / oder $d_0 \ge 18$ mm Bohrloch viermal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

Mit Schritt 5 fortfahren

Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer)

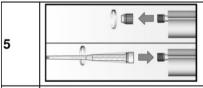
Einen geeigneten Hohlbohrer (siehe **Tabelle B1**) auf Funktion der Staubabsaugung prüfen

Verwendung eines geeigneten Staubabsaugsystems wie z. B. Bosch GAS 35 M AFC oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten

Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsystem muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen und auf maximale Leistung eingestellt sein.

Bohrlochdurchmesser d_0 und Bohrlochtiefe h_0 siehe Tabellen B2, B3, B4, B5

Mit Schritt 5 fortfahren


fischer Injektionssystem FIS V

Verwendungszweck Montageanleitung Teil 1

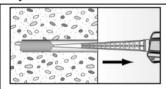
Montageanleitung Teil 2

Kartuschenvorbereitung

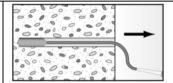
Verschlusskappe abschrauben

Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein)

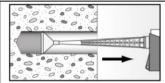
Kartusche in die Auspresspistole legen


Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gleichmäßig grau gefärbt ist. Nicht gleichmäßig grauer Mörtel ist zu verwerfen

Mit Schritt 8 fortfahren


Mörtelinjektion

7

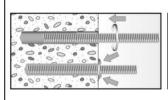

8

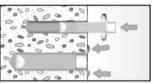
Ca. 2/3 des Bohrlochs mit Mörtel füllen. Immer am Bohrlochgrund beginnen und Blasen vermeiden

Bei Bohrlochtiefen ≥ 150 mm Verlängerungsschlauch verwenden

Bei Überkopfmontage, tiefen Bohrlöchern ($h_0 > 250$ mm) oder großen Bohrlochdurchmessern ($d_0 \ge 40$ mm) Injektionshilfe verwenden

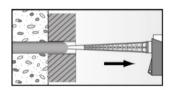
Mit Schritt 9 fortfahren


fischer Injektionssystem FIS V


Verwendungszweck Montageanleitung Teil 2

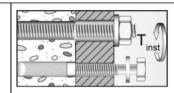
Montageanleitung Teil 3

Montage Ankerstange und fischer Innengewindeanker RG MI



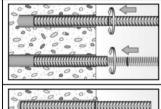
Nur saubere und ölfreie Verankerungselemente verwenden. Setztiefe des Ankers markieren. Die Ankerstange oder den fischer Innengewindeanker RG MI mit leichten Drehbewegungen in das Bohrloch schieben. Nach dem Setzen des Befestigungselementes muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein.

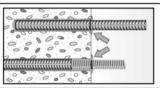
Bei Überkopfmontage die Ankerstange mit Keilen (z.B. fischer Zentrierkeile) fixieren bis der Mörtel auszuhärten beginnt


Bei Durchsteckmontage den Ringspalt mit Mörtel verfüllen

9

Aushärtezeit abwarten, t_{cure} siehe **Tabelle B7**


11

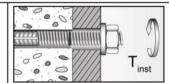

Montage des Anbauteils, T_{inst,max} siehe **Tabellen B2**

und B3

Montage Betonstahl und fischer Bewehrungsanker FRA

Nur sauberen und ölfreien Betonstahl oder fischer Bewehrungsanker FRA verwenden. Die Setztiefe markieren. Mit leichten Drehbewegungen den Bewehrungsstab oder den fischer Bewehrungsanker FRA kräftig bis zur Setztiefenmarkierung in das gefüllte Bohrloch schieben

Nach dem Erreichen der Setztiefenmarkierung muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein-


10

9

Aushärtezeit abwarten, t_{cure} siehe **Tabelle B7**

11

Montage des Anbauteils, T_{inst,max} siehe **Tabelle B5**

fischer Injektionssystem FIS V

Verwendungszweck Montageanleitung Teil 3

Tabe	lle C1: Charakt unter Zi	eristische \ug- / Querz					gfähi	gkeit v	on Ar	nkerst	anger	1	
Größe	9				М6	М8	M10	M12	M16	M20	M24	M27	M30
Zugtra	agfähigkeit, Stahl	lversagen											
Trag-	Stahl verzinkt		5.8 8.8		10 16	19 29	29 47	43 68	79 126	123 196	177 282	230 368	281 449
	Nichtrostender Stahl A4 und	Festigkeits- klasse	50	[kN]	10	19	29	43	79	123	177	230	281
Charakt. fähigkei	Hochkorrosions- beständiger	Riasse	70		14	26	41	59	110	172	247	322	393
	Stahl C		80		16	30	47	68	126	196	282	368	449
Teilsi	cherheitsbeiwerte	e ¹⁾											
its-	Stahl verzinkt		5.8 8.8						1,50 1,50				
Teilsicherheits- beiwert _{YMs,N}	Nichtrostender Stahl A4 und	Festigkeits-	50	[-]					2,86				
ilsich	Hochkorrosions-	klasse	70	' '				1,	50 ²⁾ / 1,	87			
Te	beständiger Stahl C		80						1,60				
	ragfähigkeit, Stal	nlversagen											
ohne	Hebelarm	ı											
Trag-		5.8 8.8		5 8	9 15	15 23	21 34	39 63	61 98	89 141	115 184	141 225	
	Nichtrostender Stahl A4 und	Festigkeits-	50	[kN]	5	9	15	21	39	61	89	115	141
Charakt. fähigkei	Hochkorrosions-	klasse	70	[14.4]	7	13	20	30	55	86	124	161	197
	Stahl C		80		8	15	23	34	63	98	141	184	225
Duktilit 1992-4	tätsfaktor gemäß C 4-5:2009 Abschnitt (EN/TS 6.3.2.1	k ₂	[-]					1,0				
mit He	ebelarm												
ge-	Stahl verzinkt		5.8 8.8		7 12	19 30	37 60	65 105	166 266	324 519	560 896	833 1333	1123 1797
Bie t M ^o	Nichtrostender	Festigkeits-	50	[Nm]	7	19	37	65	166	324	560	833	1123
Charakt. Biege- moment M ⁰ _{Rk,s}	Stahl A4 und Hochkorrosions-	klasse	70	נואווון	10	26	52	92	232	454	784	1167	1573
S E	beständiger Stahl C		80		12	30	60	105	266	519	896	1333	1797
Teilsi	cherheitsbeiwerte	e ¹⁾											
ts- ^	Stahl verzinkt		5.8 8.8						1,25 1,25				
erhei t y _{Ms} ,	Nichtrostender	Festigkeits-	50	.,					2,38				
Teilsicherheits- beiwert _{YMs,v}	Nichtrostender Stahl A4 und Hochkorrosions- Ho		[-]	1,25 ²⁾ / 1,56									
Tei	beständiger Stahl C		80						1,33				
¹⁾ Fa ²⁾ Nu	lls keine abweiche ır für fischer FIS A	nden nationa und RG M au	llen R us hoo	egelu chkorr	ngen e osionsl	xistierei oeständ	n ligem S	tahl C					
fisch	er Injektionssys	stem FIS V											
	t ungen akteristische Stahl	tragfähigkeite	en für	Anker	rstange	n					Anh	ang	C 1

Z7251.17

I	Tabelle C2: Charakteristische Werte für die Stahltragfähigkeit von
I	fischer Innengewindeankern RG MI unter Zug- / Querzugbeanspruchung

	or minorigon				aritor Lag	, Quoizago	oanopraon	arig			
Größe				М8	M10	M12	M16	M20			
Zugtragfähigkeit, Sta	hlversagen										
	Festigkeits-	5.8		19	29	43	79	123			
Charakteristische	klasse	8.8	[LANI]	29	47	68	108	179			
Tragfähigkeit mit N _{Ri} Schraube	Festigkeits-	A4	[kN]	26	41	59	110	172			
oomaaso .	Klasse 70	С		26	41	59	110	172			
Teilsicherheitsbeiwe	rte ¹⁾										
	Festigkeits-	5.8				1,50					
Teilsicherheits-	klasse	8.8	[-]			1,50					
beiwert YMs,t	Festigkeits-	A4	[-]	1,87							
	Klasse 70	С			1,87						
Quertragfähigkeit, St	tahlversagen										
ohne Hebelarm											
Ola a walata wiatia ala a	Festigkeits-	5.8		9,2	14,5	21,1	39,2	62,0			
Charakteristische Tragfähigkeit mit V _{RK}	klasse	8.8	[kN]	14,6	23,2	33,7	54,0	90,0			
Schraube	Festigkeits-			12,8	20,3	29,5	54,8	86,0			
	Klasse 70	С	12,8	20,3	29,5	54,8	86,0				
Duktilitätsfaktor gemäß 1992-4-5:2009 Abschn		k_2	[-]			1,0					
mit Hebelarm											
	Festigkeits-	5.8		20	39	68	173	337			
Charak- teristisches M ⁰ _R	klasse	8.8	[Nm]	30	60	105	266	519			
Biegemoment	^{k,s} Festigkeits-	A4	ַנויאווון 	26	52	92	232	454			
	Klasse 70	С		26	52	92	232	454			
Teilsicherheitsbeiwe	rte ¹⁾										
	Festigkeits-	5.8				1,25					
Teilsicherheits-	klasse	8.8	[-]			1,25					
beiwert Yms,	Festigkeits-	A4	[[-]			1,56					
	Klasse 70	С				1,56					

¹⁾ Falls keine abweichenden nationalen Regelungen existieren

fischer Injektionssystem FIS V

Leistungen

Charakteristische Stahltragfähigkeiten für fischer Innengewindeanker RG MI

Tabelle C3: Charakteristische Werte für die Stahltragfähigkeit von Betonstahl unter Zug- / Querzugbeanspruchung											
Stabnenndurchmesser		ф	8	10	12	14	16	20	25	28	
Zugtragfähigkeit, Stahlversagen											
Charakteristische Tragfähigkeit $N_{Rk,s}$ [kN] $A_s \cdot f_{uk}^{1)}$											
Quertragfähigkeit, Stahlversagen											
ohne Hebelarm											
Charakteristische Tragfähigkeit	$V_{Rk,s}$	[kN]				0,5 · A	$t_s \cdot f_{uk}^{1)}$				
Duktilitätsfaktor gemäß CEN/TS k ₂ [-] 0,8											
mit Hebelarm											
Charakteristisches Biegemoment M ⁰ _{Rk,s} [Nm] 1,2 · W _{el} · f _{uk} ¹⁾											

¹⁾ f_{uk} bzw. f_{yk} ist den Spezifikationen des Betonstahls zu entnehmen

Tabelle C4: Charakteristische Werte für die Stahltragfähigkeit von fischer Bewehrungsankern FRA unter Zug- / Querzugbeanspruchung

Größe			M12	M16	M20	M24
Zugtragfähigkeit, Stahlversagen						
Charakteristische Tragfähigkeit	$N_{Rk,s}$	[kN]	63	111	173	270
Teilsicherheitsbeiwerte ¹⁾						
Teilsicherheitsbeiwert	γ _{Ms,N}	[-]		1	,4	
Quertragfähigkeit, Stahlversage	n					
ohne Hebelarm						
Charakteristische Tragfähigkeit	$V_{Rk,s}$	[kN]	30	55	86	124
Duktilitätsfaktor gemäß CEN/TS 1992-4-5:2009 Abschnitt 6.3.2.1	k ₂	[-]		1	,0	
mit Hebelarm						
Charakteristisches Biegemoment	$M^0_{Rk,s}$	[Nm]	92	233	454	785
Teilsicherheitsbeiwerte ¹⁾					•	
Teilsicherheitsbeiwert	$\gamma_{Ms,V}$	[-]		1,	56	

¹⁾ Falls keine abweichenden nationalen Regelungen existieren

fischer Injektionssystem FIS V

Leistungen
Charakteristische Stahltragfähigkeiten für Betonstahl und fischer Bewehrungsanker FRA

Z7251.17 8.06.01-196/16

Größe							All	e Gröl	Ben				
Zugtragfähigkeit													
aktoren gemäß CEN	/TS 1992-4:2	2009 A	bschn	itt 6.2.2	2.3								
Jngerissener Beton		k _{ucr}						10,1					
Gerissener Beton		k _{cr}	[-]					7,2					
aktoren für Betondr	uckfestigkei	ten > (C20/25										
	C25/30							1,05					
	C30/37							1,10					
Erhöhungs-	C35/45	Ψ_{c}	[-]		1,15 1,19 1,22								
aktor für $ au_{Rk}$	C40/50	TC	וניו										
	C45/55												
	C50/60			1,26									
/ersagen durch Spal													
	h / h _{ef} ≥ 2,0							1,0 h _e	f				
Randabstand $_{-}$ 2,0 >	$h / h_{ef} > 1,3$	$\mathbf{c}_{cr,sp}$	[mm]				4,6	h _{ef} - 1	,8 h				
	h / h _{ef} ≤ 1,3		[]	2,26 h _{ef}									
Achsabstand		S _{cr,sp}		2 c _{cr,sp} ruch gemäß CEN/TS 1992-4-5:2009 Abschnitt 6.2.3.2									
	lförmigen B	etonai	usbruc	h gem	iß CEN	I/TS 19	92-4-5:			itt 6.2.3	3.2		
Randabstand		C _{cr,N}	[mm]					1,5 h _e					
Achsabstand		S _{cr,N}	[]					2 c _{cr,N}					
Querzugtragfähigkeit													
Montagesicherheitsfa	ktoren												
Ma Cialago la adia accesso		γ_2	.,					1.0					
Alle Einbaubedingunge	en	=	[-]					1,0					
Betonausbruch auf d	er lastabgev	γ _{inst} vandte	n Seite	e									
aktor k gemäß TR029		ranace											
Abschnitt 5.2.3.3 bzw. CEN/TS 1992-4-5:2009 Abschnitt 6.3.3	k₃ gemäß	k ₍₃₎	[-]					2,0					
Betonkantenbruch													
Der Wert von h _{ef} (= l _f) inter Querbelastung			[mm]				mi	n (h _{ef} ;	8d)				
Rechnerische Durchr	nesser												
Größe				M6	M8	M10	M12	M16	M20	M24	M27	МЗ	
Ankerstangen		d		6	8	10	12	16	20	24	27	30	
ischer Innengewindea		d_{nom}	[mm]		12	16	18	22	28				
ischer Bewehrungsanl	ker FRA	d					12	16	20	25			
Stabnenndurchmesser			ф	8	10	12	14	4	16	20	25	28	
Betonstahl		d	[mm]	8	10	12	1.	4	16	20	25	28	
fischer Injektionssy	stem FIS	V							Т				

Z7251.17

Tabelle C6: Charakteristisc	ha \//	orto für i	dia 7 11	atrad	fähiak	ait vo	n Ank	oretai	agan i	m	
hammergebohi					_				_	111	
Größe			М6	M8	M10	M12	M16	M20	M24	M27	M30
Kombiniertes Versagen durch	Herau	sziehen u	ınd Be	tonaus	bruch						
Rechnerischer Durchmesser	d	[mm]	6	8	10	12	16	20	24	27	30
Ungerissener Beton											
Charakteristische Verbundtrag											
Hammerbohren mit Standard- od	er Hoh	lbohrer (t	rockene	er und r	nasser I	<u> 3eton)</u>					
Tempe- I: 50 °C / 80 °C		[N/mm²]	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
ratur- II: 72 °C / 120 °C	Rk,ucr	[M/mm]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Hammerbohren mit Standard- od	er Hol	nlbohrer (v	vasser	gefülltes	s Bohrlo	och) 1)					
Tempe- I: 50 °C / 80 °C		2-				9,5	8,5	8,0	7,5	7,0	7,0
ratur- II: 72 °C / 120 °C	Rk,ucr	[N/mm ²]				7,5	7,0	6,5	6,0	6,0	6,0
Montagesicherheitsfaktoren											
Trockener und nasser Beton		[-]					1,0				
Wassergefülltes Bohrloch	$= \gamma_{\text{inst}}$	[-]						1,2	2 ¹⁾		
Gerissener Beton											
Charakteristische Verbundtrag											
Hammerbohren mit Standard- od	<u>er Hol</u>	<u>lbohrer (t</u>	rocken	er und r	nasser I	Beton)					
Tempe- I: 50 °C / 80 °C	_	 [N/mm²]			6,0	6,0	6,0	5,5	4,5	4,0	4,0
bereich II: 72 °C / 120 °C	τ _{Rk,cr}	[[14/11111]			5,0	5,0	5,0	5,0	4,0	3,5	3,5
Hammerbohren mit Standard- od	er Hor	nlbohrer (v	<u>wasser</u>	gefülltes	Bohrlo	och) ¹⁾					
Tempe- I: 50 °C / 80 °C	$ au_{Rk,cr}$	[N]/mm mm ²]				5,0	5,0	4,5	4,0	3,5	3,5
ratur- bereich II: 72 °C / 120 °C	[N/mm ²]				4,0	4,0	4,0	3,5	3,0	3,0	
Montagesicherheitsfaktoren											
Trockener und nasser Beton		[]					1,0				
Wassergefülltes Bohrloch	$= \gamma_{\text{inst}}$	[-]	1,2 ¹⁾								

¹⁾ Nur Koaxialkartuschen: 380 ml, 400 ml, 410 ml

fischer Injektionssystem FIS V

Leistungen

Charakteristische Werte für statische oder quasi-statische Zugbelastung von Ankerstangen (ungerissener oder gerissener Beton)

Tabelle C7: Charakteristische Werte für die Zugtragfähigkeit von fischer Innengewindeankern RG MI im hammergebohrten Bohrloch; ungerissener Beton

0		140	1440	1440	1440	1400			
Größe		M8	M10	M12	M16	M20			
Kombiniertes Versagen durch He	rausziehen	und Betonaเ	usbruch						
Rechnerischer Durchmesser	[mm]	12	16	18	22	28			
Ungerissener Beton									
Charakteristische Verbundtragfä	higkeit im ur	ngerissenen	Beton C20/2	5					
Hammerbohren mit Standard- oder	Hohlbohrer (trockener und	d nasser Beto	<u>n)</u>					
Tempe- I: 50 °C / 80 °C ratur- τ _{Pk}	ucr [N/mm²]	10,5	10,0	9,5	9,0	8,5			
bereich II: 72 °C / 120 °C	ucr [[N/IIIII]	9,0	8,0	8,0	7,5	7,0			
Hammerbohren mit Standard- oder	Hohlbohrer (wassergefüll	tes Bohrloch)	1)					
Tempe- I: 50 °C / 80 °C ratur- τ _{pk}	ucr [N/mm²]	10,0	9,0	9,0	8,5	8,0			
bereich II: 72 °C / 120 °C	ucr [[N/IIIII]	7,5	6,5	6,5	6,0	6,0			
Montagesicherheitsfaktoren									
Trockener und nasser Beton			1,0						
Wassergefülltes Bohrloch $\gamma_2 =$			1,2 ¹⁾						

¹⁾ Nur Koaxialkartuschen: 380 ml, 400 ml, 410 ml

Tabelle C8: Charakteristische Werte für die **Zugtragfähigkeit** von **Betonstahl** im hammergebohrten Bohrloch; **ungerissener oder gerissener Beton**

Stabnenndurchmesser	Ф	8	10	12	14	16	20	25	28	
Kombiniertes Versagen durch I										
Rechnerischer Durchmesser	d [mm]	8	10	12	14	16	20	25	28	
Ungerissener Beton										
Charakteristische Verbundtragt	iähigkeit im un	ngerisse	nen Be	ton C20	/25					
Hammerbohren mit Standard- ode	er Hohlbohrer (t	trockene	r und na	sser Be	ton)					
Tempe- I: 50 °C / 80 °C ratur- τ	Rk.ucr [N/mm²]	11,0	11,0	11,0	10,0	10,0	9,5	9,0	8,5	
bereich II: 72 °C / 120 °C	Rk,ucr [[N/mm ⁻]	9,5	9,5	9,0	8,5	8,5	8,0	7,5	7,0	
Montagesicherheitsfaktoren										
Trockener und nasser Beton γ_2	$=\gamma_{inst}$ [-]				1	,0				
Gerissener Beton										
Charakteristische Verbundtragt	fähigkeit im ge	erissene	n Beton	C20/25						
Hammerbohren mit Standard- ode	er Hohlbohrer (trockene	er und na	sser Be	ton)					
Tempe- I: 50 °C / 80 °C	r _{Rk,cr} [N/mm ²]		3,0	5,0	5,0	5,0	4,5	4,0	4,0	
ratur- bereich II: 72 °C / 120 °C								3,5		
Montagesicherheitsfaktoren										
Trockener und nasser Beton γ_2	$=\gamma_{inst}$ [-]				1	,0				

fischer Injektionssystem FIS V

Leistungen

Charakteristische Werte für statische oder quasi-statische Zugbelastung von fischer Innengewindeankern RG MI und Betonstahl (ungerissener Beton)

Tabelle C9: Charakteristische Werte für die Zugtragfähigkeit von fischer Bewehrungsankern FRA im hammergebohrten Bohrloch; ungerissener oder gerissener Beton

Größe		M12	M16	M20	M24				
Kombiniertes Versagen durch Herau	sziehen	und Betonausb	ruch						
Rechnerischer Durchmesser d	[mm]	12	16	20	25				
Ungerissener Beton									
Charakteristische Verbundtragfähigl	keit im un	ngerissenen Bet	ton C20/25						
Hammerbohren mit Standard- oder Hol	nlbohrer (t	trockener und na	sser Beton)						
Tempe- I: 50 °C / 80 °C	[N/mm²]	11,0	10,0	9,5	9,0				
ratur- bereich II: 72 °C / 120 °C		9,0 8,5 8,0 7,5							
Montagesicherheitsfaktoren									
Trockener und nasser Beton $\gamma_2 = \gamma_{inst}$	[-]		1,	0					
Gerissener Beton									
Charakteristische Verbundtragfähigl	ceit im ge	erissenen Beton	C20/25						
Hammerbohren mit Standard- oder Ho	nlbohrer (1	trockener und na	<u>isser Beton)</u>						
Tempe- I: 50 °C / 80 °C	[N/mm²]	5,0	5,0	4,5	4,0				
bereich II: 72 °C / 120 °C	[[14/11111]	4,5	4,5	4,0	3,5				
Montagesicherheitsfaktoren									
Trockener und nasser Beton $\gamma_2 = \gamma_{inst}$	[-]		1,	0					

fischer Injektionssystem FIS V

Leistungen

Charakteristische Werte für statische oder quasi-statische Zugbelastung von fischer Bewehrungsankern FRA (ungerissener oder gerissener Beton)

Größe	М6	M8	M10	M12	M16	M20	M24	M27	M30		
Verschiebungs-Faktor	en für Zu	glast ¹⁾									
Ungerissener Beton; Temperaturbereich I, II											
$\frac{\delta_{\text{N0-Faktor}}}{\epsilon}$ [mm/(N/mm ²)]	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12		
$\delta_{N_{\infty}\text{-Faktor}}$	0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14		
Gerissener Beton; Temperaturbereich I, II											
$\frac{\delta_{\text{N0-Faktor}}}{[\text{mm/(N/mm}^2)]}$			0,12	0,12	0,13	0,13	0,13	0,14	0,15		
$\delta_{N_{\infty}\text{-Faktor}}$			0,27	0,30	0,30	0,30	0,35	0,35	0,40		
Verschiebungs-Faktoren für Querlast ²⁾											
Ungerissener oder gerissener Beton; Temperaturbereich I, II											
δ _{V0-Faktor} [mm/kN]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07		
$\delta_{V_{\infty}\text{-Faktor}}$ [mm/kN]	0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09		

¹⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed}: Bemessungswert der einwirkenden Zugspannung)

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V_{Ed}$

 $\delta_{\text{V}\infty} = \delta_{\text{V}\infty\text{-Faktor}} \cdot \text{V}_{\text{Ed}}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

Tabelle C11: Verschiebungen für fischer Innengewindeanker RG MI

Größe		М8	M10	M12	M16	M20				
Verschiebungs-F	aktor	en für Zuglast ¹⁾								
Ungerissener Beton; Temperaturbereich I, II										
$\frac{\delta_{\text{N0-Faktor}}}{2}$ [mm/(N/n	2\1	0,10	0,11	0,12	0,13	0,14				
δ _{N∞-Faktor}	ןנל יייי	0,13	0,14	0,15	0,16	0,18				
Verschiebungs-F	aktor	en für Querlast ²⁾								
Ungerissener Bet	gerissener Beton; Temperaturbereich I, II									
δ _{V0-Faktor} [mm/k	NII	0,12	0,12	0,12	0,12	0,12				
δ _{V∞-Faktor}	נייו	0,14	0,14	0,14	0,14	0,14				

1) Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{Ed}$: Bemessungswert der einwirkenden Zugspannung)

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{V0}} = \delta_{\text{V0-Faktor}} \cdot V_{\text{Ed}}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V_{Ed}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

fischer Injektionssystem FIS V

Leistungen

Verschiebungen Ankerstangen und fischer Innengewindeanker RG MI

Stabnen durchme	т — — — — — — — — — — — — — — — — — — —	8	10	12	14	16	20	25	28	
Verschie	bungs-Faktor	en für Zug	last ¹⁾							
Ungeris	sener Beton; T	emperatui	rbereich I, I	I						
$\delta_{N0-Faktor}$	[mm/(N/mm²)]	0,09	0,09	0,10	0,10	0,10	0,10	0,10	0,11	
δ _{N∞-Faktor}	[[mm/(IN/mm ⁻)]	0,10	0,10	0,12	0,12	0,12	0,12	0,13	0,13	
Gerisser	ner Beton; Ten	nperaturbe	reich I, II							
$\delta_{N0-Faktor}$	[mm/(N/mm²)]		0,12	0,12	0,13	0,13	0,13	0,13	0,14	
δ _{N∞-Faktor}	 		0,27	0,30	0,30	0,30	0,30	0,35	0,37	
Verschiebungs-Faktoren für Querlast ²⁾										
Ungeris	sener oder ger	issener Be	eton; Temp	eraturbere	ich I, II					
$\delta_{ m V0-Faktor}$	[mm/lsN]	0,11	0,11	0,10	0,10	0,10	0,09	0,09	0,08	
δ _{V∞-Faktor}	[mm/kN]	0,12	0,12	0,11	0,11	0,11	0,10	0,10	0,09	

¹⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed}: Bemessungswert der einwirkenden Zugspannung) ²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V_{Ed}$

 $\delta_{\text{V}\infty} = \delta_{\text{V}\infty\text{-Faktor}} \cdot \text{V}_{\text{Ed}}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

Tabelle C13: Verschiebungen für fischer Bewehrungsanker FRA

Größe		M12	M16	M20	M24						
Verschie	bungs-Faktor	en für Zuglast ¹⁾									
Ungeriss	Ungerissener Beton; Temperaturbereich I, II										
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm²)]	0,10	0,10	0,10	0,10						
$\delta_{\text{N}_{\infty}\text{-Faktor}}$	[11111/(19/111111)]	0,12	0,12	0,12	0,13						
Gerissener Beton; Temperaturbereich I, II											
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm²)]	0,12	0,13	0,13	0,13						
$\delta_{\text{N}_{\infty}\text{-Faktor}}$	[111117/(14/111111)]	0,30	0,30	0,30	0,35						
Verschie	bungs-Faktor	en für Querlast ²⁾									
Ungerissener oder gerissener Beton; Temperaturbereich I, II											
$\delta_{\text{V0-Faktor}}$	[mm/kN]	0,10	0,10	0,09	0,09						
$\delta_{\text{V}_{\text{N}-\text{Faktor}}}$	[IIIII/KIN]	0,11	0,11	0,10	0,10						

¹⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed}: Bemessungswert der einwirkenden Zugspannung) ²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{V0}} = \delta_{\text{V0-Faktor}} \cdot \, \text{V}_{\text{Ed}}$

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-Faktor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

fischer Injektionssystem FIS V

Leistungen

Verschiebungen Betonstahl und fischer Bewehrungsanker FRA

labelle	C14: Charakte für die se	ristische W eismische L				_	_	von An	ıkerstaı	ngen	
Größe					M10	M12	M16	M20	M24	M27	M30
Zugtragf	ähigkeit, Stahlver	rsagen									
Ankersta	angen, Leistungsl	kategorie C1									
3g- ,s,C1	Stahl verzinkt		5.8 8.8		29 47	43 68	79 126	123 196	177 282	230 368	281 449
t. Trs t N _{rk}	Nichtrostender	Festigkeits-	50	[kN]	29	43	79	123	177	230	281
Charakt. Trag- fähigkeit N _{Rk,s,C1}	Stahl A4 und Hochkorrosions-	klasse	70	ונאואן	41	59	110	172	247	322	393
ج اق ا	beständiger Stahl C		80		47	68	126	196	282	368	449
Ankersta	angen, Leistungsl	kategorie C2									
- 25	Stahl verzinkt		5.8			39	72	108			
rag _{Rk,s,}			8.8			61	116	173			
Т. Т Н N	Nichtrostender Stahl A4 und	Festigkeits- klasse	50	[kN]		39	72	108			
Charakt. Trag- fähigkeit N _{Rk,s,C2}	Hochkorrosions-		70			53	101	152			
	beständiger Stahl C		80			61	116	173			
	gfähigkeit, Stahlve										
fischer F	IS A und RG M, L	.eistungskat		ie C1		0.1					
-0	Stahl verzinkt		5.8 8.8	-	15 23	21 34	39 63	61 98	89 141	115 184	141 225
. Tra V _{RK,s}	Nichtrostender Stahl A4 und Hochkorrosions-	Festigkeits-	50		15	21	39	61	89	115	141
Charakt. Trag- fähigkeit V _{Rk,s,C1}		klasse	70	[kN]	20	30	55	86	124	161	197
Chi	beständiger Stahl C		80		23	34	63	98	141	184	225
Handels	übliche Gewindes	stangen, Leis	stung	gskat	egorie C	1					
. 5	Stahl verzinkt	Festigkeits-	5.8		11	15	27	43	62	81	99
Trag- V _{RK,s,C1}			8.8] [16	24	44	69	99	129	158
akt. Trag- eit V _{Rk,s,C1}	Nichtrostender Stahl A4 und		50	[kN]	11	15	27	43	62	81	99
Charakt. ⁷ fähigkeit V	Hochkorrosions- beständiger		70		14	21	39	60	87	113	138
	Stahl C		80		16	24	44	69	99	129	158
Ankersta	angen, Leistungsl	kategorie C2									
-b 25	Stahl verzinkt		5.8			14	27	43			
. Trag- V _{Rk,s,C2}	Nichtrostender Stahl A4 und Hochkorrosions-	Festigkeits- klasse	8.8 50			22 14	44 27	69 43			
Charakt. Trag- ähigkeit V _{Rk,s,C2}			70	[kN]		20	39	60			
Cha fähig	beständiger Stahl C		80			22	44	69			

fischer Injektionssystem FIS V

Leistungen

Charakteristische Stahltragfähigkeiten für Ankerstangen unter seismischer Einwirkung (Leistungskategorie C1 oder C2)

Tabelle C15: Teilsicherheitsbeiwerte von Ankerstangen für die seismische Leistungskategorie C1 oder C2

Größe		M10	M12	M16	M20	M24	M27	M30			
Zugtragfähigkeit, Stahlversagen ¹⁾											
ı	Stahl verzinkt	Festigkeits- klasse	5.8	[-]				1,50			
eits	Starii verzirikt		8.8					1,50			
herh ert 🦘	0 1 1 4 4		50					2,86			
eilsicherheits beiwert _{Yms,N}			70				1	,50 ²⁾ / 1,8	37		
1			80					1,60			
Quertrag	fähigkeit, Stahlve	ersagen ¹⁾									
	Stahl verzinkt	Festigkeits- klasse	5.8	[-]				1,25			
eits _{As,V}	Starii verzirikt		8.8					1,25			
herh ert _{YA}	Nichtrostender Stahl A4 und Hochkorrosions-		50					2,38			
Teilsicherheits- beiwert _{YMs,V}			70		1,25 ²⁾ / 1,56						
1	beständiger Stahl C		80					1,33			

Tabelle C16: Charakteristische Werte für die Zugtragfähigkeit von Ankerstangen für die seismische Leistungskategorie C1 im hammergebohrten Bohrloch

Größe					M10	M12	M16	M20	M24	M27	M30
Charakteristische Verbundtragfähigkeit, kombiniertes Versagen durch Herausziehen und Betonausbruch											
Hammerl	oohr	en mit Standard	- oder l	Hohlbohr	er (trock	ener und	nasser E	Beton)			
Tempe-	l:	50 °C / 80 °C	_	[N/mm²]	4,5	5,5	5,5	5,5	4,5	4,0	4,0
ratur- bereich	II:	72 °C / 120 °C	τ _{Rk,C1}	[[[]	4,0	4,5	4,5	4,5	4,0	3,5	3,5
Hammerl	Hammerbohren mit Standard- oder Hohlbohrer (wassergefülltes Bohrloch)										
Tempe-	l:	50 °C / 80 °C	_	[NI/mm2]		5,0	5,0	4,5	4,0	3,5	3,5
ratur bereich	II:	72 °C / 120 °C	τ _{Rk,C1}	[N/mm²]		4,0	4,0	4,0	3,5	3,0	3,0

fischer Injektionssystem FIS V

Leistungen

Teilsicherheitsbeiwerte (C1 oder C2) sowie Charakteristische Werte unter seismischer Einwirkung (C1) für Ankerstangen

¹⁾ Falls keine abweichenden nationalen Regelungen existieren
²⁾ Nur für fischer FIS A und RG M aus hochkorrosionsbeständigem Stahl C

ľ	Tabelle C17: Charakteristische Werte für die Zugtragfähigkeit von Ankerstangen für die
ı	seismische Leistungskategorie C2 im hammergebohrten Bohrloch

Größe					M12	M16	M20			
Charakteristische Verbundtragfähigkeit, kombiniertes Versagen durch Herausziehen und Betonausbruch										
Hammerbohren mit Standard- oder Hohlbohrer (trockener und nasser Beton)										
Tempe- ratur-	I: 50 °C / 80 °C		_	[N]/ma ma 2]	1,5	1,3	2,1			
bereich	II:	72 °C / 120 °C	τ _{Rk,C2}	[N/mm²]	1,3	1,2	1,9			
Hammerk	Hammerbohren mit Standard- oder Hohlbohrer (wassergefülltes Bohrloch)									
Tempe-	l:	50 °C / 80 °C	_	[N/mm²]	1,3	1,1	1,8			
ratur bereich	II:	72 °C / 120 °C	τ _{Rk,C2}		1,1	1,0	1,6			
Verschiel	Verschiebungs-Faktoren für Zuglast ¹⁾									
δ _{N,(DLS)} -Faktor			[mm/(N/mm²)]	0,20	0,13	0,21				
$\delta_{ m N,(ULS)-Faktor}$			[[[[[[]]	0,38	0,18	0,24				
Verschiebungs-Faktoren für Querlast ²⁾										
$\delta_{V,(DLS)}$ -Faktor				[mm/kN]	0,18	0,10	0,07			
$\delta_{V,(ULS) ext{-Faktor}}$			[mm/kN]	0,25	0,14	0,11				

¹⁾ Berechnung der effektiven Verschiebung:

 $\delta_{N,(DLS)} = \delta_{N,(DLS)\text{-Faktor}} \cdot \tau_{Ed}$ $\delta_{N,(ULS)} = \delta_{N,(ULS)\text{-Faktor}} \cdot \tau_{Ed}$ $\tau_{Ed} \cdot \text{Remessures wert der}$

 $(\tau_{\text{Ed}}$: Bemessungswert der einwirkenden Zugspannung)

²⁾ Berechnung der effektiven Verschiebung:

$$\begin{split} &\delta_{V,(DLS)} = \delta_{V,(DLS)\text{-Faktor}} \cdot V_{Ed} \\ &\delta_{V,(ULS)} = \delta_{V,(ULS)\text{-Faktor}} \cdot V_{Ed} \\ &(V_{Ed}\text{: Bemessungswert der einwirkenden Querkraft}) \end{split}$$

fischer Injektionssystem FIS V

Leistungen

Charakteristische Werte unter seismischer Einwirkung (Leistungskategorie C2) für Ankerstangen