

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-10/0170 vom 7. Mai 2015

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von Deutsches Institut für Bautechnik

Upat Ankerbolzen MAX

Kraftkontrolliert spreizender Dübel zur Verankerung im Beton

Upat Vertriebs GmbH Otto-Hahn Straße 15 79211 Denzlingen DEUTSCHLAND

Upat

21 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

Leitlinie für die europäisch technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 2: "Kraftkontrolliert spreizende Dübel", April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.

Europäische Technische Bewertung ETA-10/0170

Seite 2 von 21 | 7. Mai 2015

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z28757.15 8.06.01-66/15

Europäische Technische Bewertung ETA-10/0170

Seite 3 von 21 | 7. Mai 2015

Besonderer Teil

1 Technische Beschreibung des Produkts

Der UPAT Ankerbolzen MAX ist ein Dübel aus galvanisch verzinktem Stahl (MAX) oder aus nichtrostendem Stahl (MAX A4) oder aus hochkorrosionsbeständigem Stahl (MAX C), der in ein Bohrloch gesetzt und durch kraftkontrollierte Verspreizung verankert wird.

Die Produktbeschreibung ist in Anhang A dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand für statische und quasi- statische Einwirkungen für die Bemessung nach ETAG 001 Anhang C oder CEN/TS 1992-4:2009	Siehe Anhang C 1 bis C 3
Charakteristischer Widerstand für die seismische Leistungskategorien C1 und C2	Siehe Anhang C 6 bis C 7
Verschiebungen für statische und quasi-statische Einwirkungen	Siehe Anhang C 8
Verschiebungen für seismische Einwirkungen	Siehe Anhang C 9

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Siehe Anhang C 4, C 5

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Nicht zutreffend.

3.4 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

3.5 Schallschutz (BWR 5)

Nicht zutreffend.

3.6 Energieeinsparung und Wärmeschutz (BWR 6)

Nicht zutreffend

Z28757.15 8.06.01-66/15

Europäische Technische Bewertung ETA-10/0170

Seite 4 von 21 | 7. Mai 2015

3.7 Nachhaltige Nutzung der natürlichen Ressourcen (BWR 7)

Die nachhaltige Nutzung der natürlichen Ressourcen wurde nicht untersucht.

3.8 Allgemeine Aspekte

Der Nachweis der Dauerhaftigkeit ist Bestandteil der Prüfung der Wesentlichen Merkmale. Die Dauerhaftigkeit ist nur sichergestellt, wenn die Angaben zum Verwendungszweck gemäß Anhang B beachtet werden.

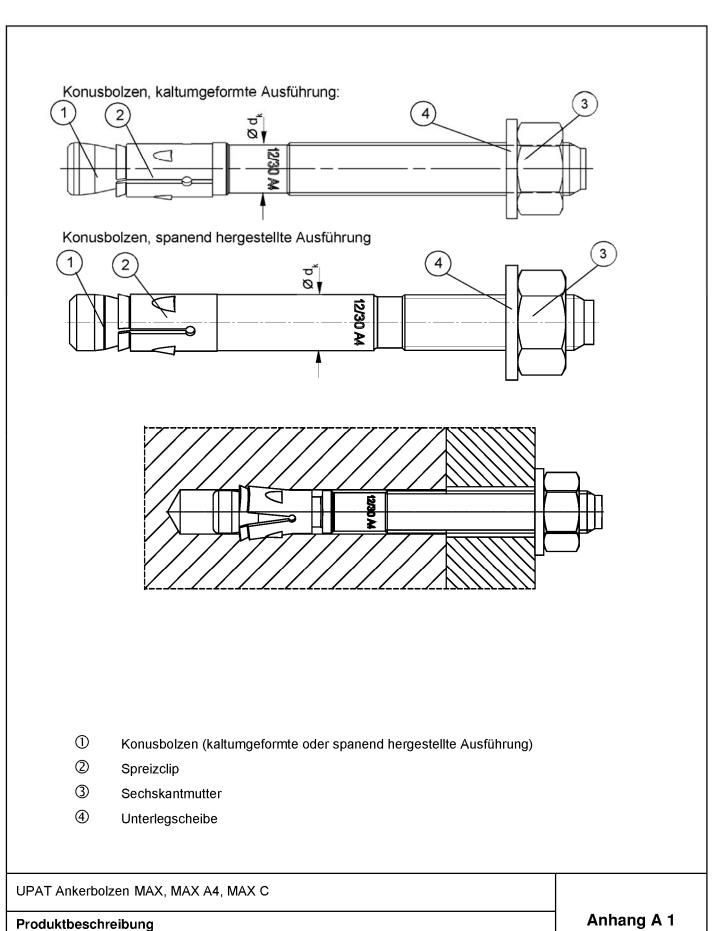
4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß Entscheidung der Kommission vom 24. Juni 1996 (96/582/EG) (ABI. L 254 vom 08.10.96, S. 62-65) gilt das System zur Bewertung und Überprüfung der Leistungsbeständigkeit (AVCP) (siehe Anhang V in Verbindung mit Artikel 65 Absatz 2 der Verordnung (EU) Nr. 305/2011) entsprechend der folgenden Tabelle.

Produkt	Verwendungszweck	Stufe oder Klasse	System
Metallanker zur Verwendung in Beton (hoch belastbar)	zur Verankerung und/oder Unterstützung strukturaler Betonelemente oder schwerer Bauteile wie Bekleidung und Unterdecken	_	1

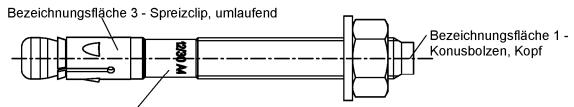
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.


Ausgestellt in Berlin am 7. Mai 2015 vom Deutschen Institut für Bautechnik

Andreas Kummerow Beglaubigt: i.V. Abteilungsleiter

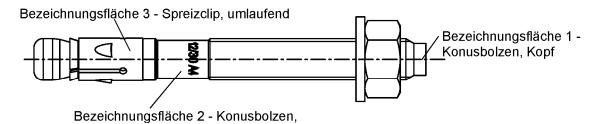
Z28757.15 8.06.01-66/15


Einbauzustand

MAX für Standard- und reduzierte Verankerungstiefe (hef, sta und hef, red):

Bezeichnungsfläche 2 - Konusbolzen, umlaufend

Produktkennzeichnung, MAX 12/10 A4


Werksbezeichnung | Dübeltyp — Gewindegröße / max. Anbauteildicke (t_{fix}) für h_{ef, sta} auf Bezeichnungsfläche 2 oder Bezeichnungsfläche 3

Kennzeichnung A4 auf Bezeichnungsfläche 2

Tabelle A1: Buchstabencode auf Bezeichnungsfläche 1 und maximal zulässige Anbauteildicke t_{fix}:

Markierun	g	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(l)	(K)	(L)	(M)	(N)	(O)	(P)	(R)	(S)	(T)	(U)	(V)	(W)	(X)	(Y)	(Z)
max. t _{fix} für h _{ef, sta}	M8-M24	5	10	15	20	25	30	35	40	45	50	60	70	80	90	100	120	140	160	180	200	250	300	350	400
max. t _{fix} für h _{ef, red}	M10- M16	25	30	35	40	45	50	55	60	65	70	80	90	100	110	120	140	160	180	200	220	270	320	370	420

MAX K nur für reduzierte Verankerungstiefe (h_{ef, red}):

Produktkennzeichnung,

Werksbezeichnung | Dübeltyp auf Bezeichnungsfläche 2 oder Bezeichnungsfläche 3

MAX

12/10 K A4

Gewindegröße / max. Anbauteildicke (t_{fix})

Kennzeichnung K für h_{ef, red} | Kennzeichnung A4 auf Bezeichnungsfläche 2

Tabelle A2: Buchstabencode auf Bezeichnungsfläche 1 und maximal zulässige Anbauteildicke $t_{\rm fix}$:

Markierung	(a)	(b)	(c)	(d)
max. t _{fix} für h _{ef, red} M10-M16	5	10	15	20

Kennzeichnung für h_{ef.red} sind Kleinbuchstaben

UPAT Ankerbolzen MAX, MAX A4, MAX C	
Produktbeschreibung Ankertypen	Anhang A 2

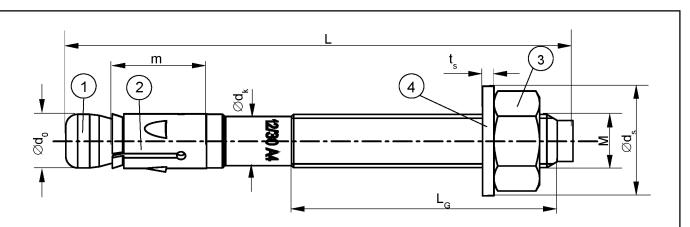


Tabelle A3: Dübelabmessungen [mm]

Teil	Pozoiohnung				М	AX, MAX	A4, MAX	C	
I ell	Bezeichnung			M8	M10	M12	M16	M20	M24
		Gewind	legröße M	M8	M10	M12	M16	M20	M24
,	Kanuahal-an	$\emptyset d_0$		7,8	9,8	11,8	15,7	19,8	23,5
1	Konusbolzen	$\emptyset d_k$		7,1	8,9	10,7	14,5	19,8	23,5
		L _G	≥	19	26	31	40	50	57
2	Caroizolia	m		17,8	20,0	20,6	27,5	33,4	40,2
-	Spreizclip	Blechdicke		1,3	1,4	1,6	2,4	2,4	3,0
3	Sechskantmutter	Schlüss	selweite	13	17	19	24	30	36
	Lintariognahaiha	ts	≥	1,4	1,8	2,3	2,7	2,7	3,7
4	Unterlegscheibe	$\emptyset d_s$	≥	15	19	23	29	36	43
Anhou	toildiaka	t _{fix}	≥	0	0	0	0	0	0
Alibau	Anbauteildicke		\leq	200	250	300	400	500	600
Düball	D"L - II"		=	64,5	64,5	79	102	141	174
Dübell	ange	L _{max}	Ш	267	336	401	524,5	644	777

UPAT Ankerbolzen MAX, MAX A4, MAX C	
Produktbeschreibung Ankertypen	Anhang A 3

Tabelle A4: Materialien MAX

Teil	Bezeichnung	Material
1	Konusbolzen	Kaltstauchstahl oder Automatenstahl (verzinkt) Nennstahlzugfestigkeit: f _{uk} ≤ 1000 N/mm²
2	Spreizclip	Kaltband, EN 10139:2013 (verzinkt)
3	Sechskantmutter	Stahl, Festigkeitsklasse min. 8, EN ISO 898-2:2012 (verzinkt)
4	Unterlegscheibe	Kaltband, EN 10139:2013 (verzinkt)

Tabelle A5: Materialien MAX A4

Teil	Bezeichnung	Material
1	Konusbolzen	nichtrostender Stahl EN 10088:2014 Nennstahlzugfestigkeit: f _{uk} ≤ 1000 N/mm²
2	Spreizclip	nichtrostender Stahl EN 10088:2014
3	Sechskantmutter	nichtrostender Stahl EN 10088:2014; ISO 3506-2: 2009; Festigkeitsklasse – min. 70
4	Unterlegscheibe	nichtrostender Stahl EN 10088:2014

Tabelle A6: Materialien MAX C

Teil	Bezeichnung	Material
1	Konusbolzen	hochkorrosionsbeständiger Stahl EN 10088:2014 Nennstahlzugfestigkeit: f _{uk} ≤ 1000 N/mm²
2	Spreizclip	nichtrostender Stahl EN 10088:2014
3	Sechskantmutter	hochkorrosionsbeständiger Stahl EN 10088:2014; ISO 3506-2:2009; Festigkeitsklasse – min. 70
4	Unterlegscheibe	hochkorrosionsbeständiger Stahl EN 10088:2014

UPAT Ankerbolzen MAX, MAX A4, MAX C

Produktbeschreibung
Materialien

Anhang A 4

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

canopiachang aci verankerang.								
Standard Verankerungstiefe					/	31		
Ankerbolzen MAX, MAX A4, MAX C		M8	M10	M12	M16	M20	M24	
Statische oder quasi-statische Einwirkung					/			
Gerissener und ungerissener Beton				V	/			
Brandbeanspruchung					/			
Seismische Einwirkung Kategorie	C1	✓						
Seismische Emwirkung Kalegone	C2 ¹⁾	-			0.1	-		
Reduzierte Verankerungstiefe		-		/				
Ankerbolzen MAX, MAX A4, MAX C		120	M10	M12	M16	-		
Statische oder quasi-statische Einwirkung		-		/				
Gerissener und ungerissener Beton		-		/			,	
Brandbeanspruchung		153		-				
Seismische Einwirkung Kategorie	C1	()	- /					
Seismische Emwirkung Kategorie	C2 ¹⁾	_		/	-			
1)								

¹⁾ MAX C: Gültig nur für umgeformte Ausführung (siehe A1)

Verankerungsgrund:

- Bewehrter und unbewehrter Normalbeton (gerissener und ungerissener Beton gemäß EN 206-1:2000.
- Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206-1:2000.

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (MAX, MAX A4, MAX C).
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (MAX A4, MAX C).
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (MAX C).

Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden.)

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage der Dübel anzugeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern).
- Bemessung der Verankerungen unter statischer oder quasi-statischer Belastung nach:
 - ETAG 001, Anhang C, Bemessungsmethode A, Ausgabe August 2010 oder
 - CEN/TS 1992-4:2009, Bemessungsmethode A.
- Bemessung der Verankerungen unter seismischer Einwirkung (gerissener Beton) nach:
 - EOTA Technical Report TR 045, Ausgabe Februar 2013.
 - Die Verankerungen sind außerhalb kritischer Bereiche (z.B. plastischer Gelenke) der Betonkonstruktion anzuordnen.
 - Eine Abstandsmontage oder die Montage auf Mörtelschicht ist für seismische Einwirkungen nicht erlaubt.
- Bemessung der Verankerungen unter Brandbeanspruchung nach:
 - EOTA Technical Report TR 020, Ausgabe Mai 2004.
 - CEN/TS 1992-4:2009, Anhang D.
 - Es muss sichergestellt werden, dass keine lokalen Abplatzungen der Betonoberfläche auftreten

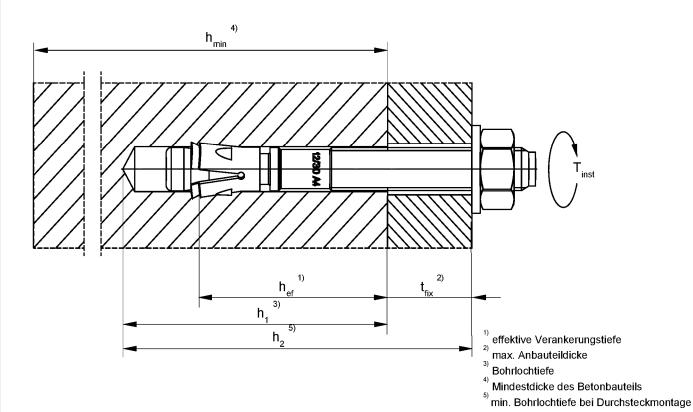

UPAT Ankerbolzen MAX, MAX A4, MAX C	
Verwendungszweck Spezifikationen	Anhang B 1

Tabelle B1: Montage- und Dübelkennwerte

Dübeltyp / Größe		MAX, MAX A4, MAX C								
Dubeltyp / Grose			M10	M12	M16	M20	M24			
Bohrernenndurchmesser	$d_0 = [mm]$	8	10	12	16	20	24			
Schneidendurchmesser des Bohrers	$d_{cut} \leq [mm]$	8,45	10,45	12,5	16,5	20,55	24,55			
Standardverankerungstiefe	$h_{\text{ef,sta}} \geq [mm]$	45	60	70	85	100	125			
Bohrlochtiefe in Beton für h _{ef,sta}	$h_{1,sta} \geq [mm]$	55	75	90	110	125	155			
Reduzierte Verankerungstiefe	$h_{\text{ef,red}} \geq [mm]$	-	40	50	65	-	1			
Bohrlochtiefe in Beton für h _{ef,red}	$h_{1,\text{red}} \geq [mm]$	-	55	70	90	-	ı			
Durchmesser des Durchgangslochs im Anbauteil ¹⁾	$d_f \! \leq \ [mm]$	9	12	14	18	22	26			
Montagedrehmoment	$T_{inst} = [Nm]$	20	45	60	110	200	270			

¹⁾Wenn ein größeres Durchgangsloch im Anbauteil benutzt wird, siehe Kapitel 4.2.2.1 von ETAG 001, Anhang C

UPAT Ankerbolzen MAX, MAX A4, MAX C

Verwendungszweck
Montage- und Dübelkennwerte

Anhang B 2

Tabelle B2: Mindestdicke der Betonbauteile, minimale Achs- und Randabstände für Anker mit **Standardverankerungstiefe** (h_{ef, sta})

	Dübaltırı / Cräßa			MA	X, MAX	A4, MA)	(C		
Dübeltyp / Größe			M8	M10	M12	M16	M20	M24	
effektive Standardverankerungstiefe h _{ef,sta} ≥ [mm]				60	70	85	100	125	
	Mindestdicke des Betonbauteils	h _{min, 1} [mm]	100	120	140	170	200	250	
	Ungerissener Beton								
ੂ ਫ਼ੂ ਜ਼ੂ	Minimaler Achsabstand	s _{min} [mm]	40	40	50	65	95	100	
en i en d	Millillalei Aciisabstaliu	für c ≥ [mm]	50	60	70	95	180	200	
Inge teile 2 x	Minimalar Dandahatand	c _{min} [mm]	40	45	55	65	95	135	
Anwendungen in Betonbauteilen der Dicke ≥ 2 x h _{ef}	Minimaler Randabstand -	für s ≥ [mm]	100	80	110	150	190	235	
nwend tonbau Dicke	Gerissener Beton								
Pet P	Minimaler Achsabstand -	s _{min} [mm]	35	40	50	65	95	100	
"		für c≥ [mm]	50	55	70	95	140	170	
	Minimaler Randabstand	c _{min} [mm]	40	45	55	65	85	100	
	Willimaler Randabstand	für s ≥ [mm]	70	80	110	150	190	220	
in der	Mindestdicke des Betonbauteils	h _{min, 2} [mm]	80	100	120	140	160	200	
gen ii ilen d x h _{ef}	Gerissener und ungerissene	er Beton							
un Ltei	Minimaler Achsabstand	s _{min} [mm]	35	40	50	80	125	150	
nwend tonbar Dicke	William Achsabstand	für c≥ [mm]	70	100	90	130	220	230	
Anw etor Dic	Minimaler Randabstand	c _{min} [mm]	40	60	60	65	125	135	
_ ~ ~	Willimater Natioabstatio	für s ≥ [mm]	100	90	120	180	230	235	

Zwischenwerte für s_{min} und c_{min} innerhalb gleicher Betonbauteildicken dürfen interpoliert werden.

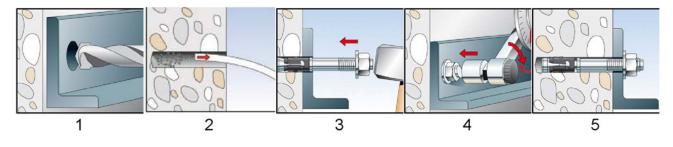
Tabelle B3: Mindestdicke der Betonbauteile, minimale Achs- und Randabstände für Anker mit reduzierter Verankerungstiefe (h_{ef, red})

Dübeltyp / Größe			MAX, MAX A4, MAX C					
	Dubeltyp / Groise		M10	M12	M16			
Reduzierte effektive Verankerungstiefe		$\mathbf{h}_{ef,red} \geq [mm]$	40	50	65			
	Mindestdicke des Betonbauteils	h _{min, 3} [mm]	80	100	140			
	Ungerissener Beton							
der der	Minimaler Achsabstand	s _{min} [mm]	40	50	65			
en i en d : h _{ef}		für c ≥ [mm]	100	110	130			
inge teile 2 x	Minimaler Randabstand	c _{min} [mm]	45	55	65			
Anwendungen Betonbauteilen Dicke≥2 x h _t		für s ≥ [mm]	180	220	250			
nwenc tonbaı Dicke	Gerissener Beton							
Angeto	Balining along Alaba alamah	s _{min} [mm]	40	50	65			
` @	Minimaler Achsabstand	für c ≥ [mm]	90	110	130			
	Minimalan Dan dahatan d	c _{min} [mm]	45	55	65			
	Minimaler Randabstand	für s ≥ [mm]	180	220	250			

Zwischenwerte für s_{min} und c_{min} dürfen linear interpoliert werden.

Verwendungszweck
Mindestbauteildicken und minimale Achs- und Randabstände

Anhang B 3


Tabelle B4: Minimale Achs- und Randabstände für Anker gemäß
TR 020 und ETAG 001, Anhang C unter Brandbeanspruchung und gemäß
CEN/TS 1992-4: 2009, Anhang D unter Brandbeanspruchung

Dübaltın / Cröß o			MAX, MAX A4, MAX C							
Dübeltyp / Größe			M8	M10	M12	M16	M20	M24		
Achsabstand	S _{min}	[mm]	35	40	45	60	95	100		
Randabstand	C _{min}	[mm]	c _{min} = 2 x h _{ef} , bei mehrseitiger Brandbeanspruchung c _{min} ≥ 300 mm							

Montageanleitung

Von der Brauchbarkeit des Dübels kann nur ausgegangen werden, wenn folgende Bedingungen eingehalten sind:

- · Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons in den der Dübel gesetzt werden soll, nicht niedriger ist, als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten
- Einwandfreie Verdichtung des Betons, z.B. keine signifikanten Hohlräume
- · Einhaltung der festgelegten Achs- und Randabstände ohne Minustoleranzen

Nr.		Beschreibung
1	Bohrloch erstellen	
		Bohrloch senkrecht zur Oberfläche des Verankerungsgrunds erstellen, ohne die Bewehrung zu beschädigen. Bei Fehlbohrung: Anordnung eines neuen Bohrlochs im Abstand > 2x Tiefe der Fehlbohrung oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Queroder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt.
2	Bohrloch reinigen	
3	Anker setzen	
4	Anker mit dem vorg	geschriebenen Anzugsdrehmoment verspreizen T _{inst}
5	Abgeschlossene M	ontage

L		
	UPAT Ankerbolzen MAX, MAX A4, MAX C	
	Verwendungszweck minimale Achs- und Randabstände Montageanleitung	Anhang B 4

Charakteristische Werte für Zugtragfähigkeit für Standardverankerungstiefe unter statischer und quasi-statischer Belastung (Bemessungsmethode A, gemäß ETAG 001, Anhang C oder CEN/TS 1992-4:2009)

Dübaltın / Cräß a			MAX, MAX A4, MAX C						
Dübeltyp / Größe			М8	M10	M12	M16	M20	M24	
Stahlversagen für Standardveranl	kerungstie	efe							
Charakteristischer Widerstand	$N_{Rk,s}$	[kN]	16,0	27,0	41,5	66,0	111,0	150,0	
Teilsicherheitsbeiwert	γ _{Ms} 3)	[-]				1,5			
Herausziehen für Standardverank	erungstie	fe							
Effektive Verankerungstiefe	h _{ef,sta} ≥	<u> [mm]</u>	45	60	70	85	100	12	
Charakteristische Tragfähigkeit in gerissenem Beton C20/25	$N_{Rk,p}$	[kN]	5	9	16		- ¹⁾		
Charakteristische Tragfähigkeit in ungerissenem Beton C20/25	$N_{Rk,p}$	[kN]	9	16	25		_ 1)		
		C25/30			1	,10			
		C30/37			1	,22			
Erhöhungsfaktoren für N _{Rk,p} für gerissenen und ungerissenen Beton		C35/45			1	,34			
	Ψс	C40/50	1,41						
		C45/55	1,48						
		C50/60	i i i i i i i i i i i i i i i i i i i						
Montagesicherheitsbeiwert	γ ₂ = γinst					1,0			
Betonausbruch und Spalten für S der Dicke ≥ 2x h _{ef}			gstiefe	für Anv	vendun	gen in E	Betonba	uteile	
Effektive Verankerungstiefe	h _{ef}	[mm]	45	60	70	85	100	125	
Faktor für ungerissenen Beton	k_{ucr}	[-]			1	0,1			
Faktor für gerissenen Beton	k _{cr}	[-]				7,2			
Mindestdicke des Betonbauteils	h _{min, 1}	[mm]	100	120	140	170	200	250	
Charakteristischer Achsabstand	$s_{\text{cr,N}}$	[mm]				3 h _{ef}			
Charakteristischer Randabstand	C _{cr,N}	[mm]				5 h _{ef}			
Achsabstand (Spalten) 2)	S _{cr,sp}	[mm]	140	180	210	260	370	430	
Randabstand (Spalten) 2)	$C_{cr,sp}$	[mm]	70	90	105	130	185	215	
Betonausbruch und Spalten für S der Dicke $< 2x h_{ef}$	tandardve	erankerun	gstiefe	für Anv	vendun	gen in E	Betonba	uteile	
Effektive Verankerungstiefe	h_{ef}	[mm]	45	60	70	85	100	125	
Faktor für ungerissenen Beton	k _{ucr}	[-]				0,1			
Faktor für gerissenen Beton	k _{cr}	[-]				7,2			
Mindestdicke des Betonbauteils	h _{min, 2}	[mm]	80	100	120	140	160	200	
Charakteristischer Achsabstand	S _{cr,N}	[mm]							
Charakteristischer Randabstand	C _{cr,N}	[mm]				5 h _{ef}			
Achsabstand (Spalten) 2)	S _{cr,sp}	[mm]	180	240	280	340	480	550	
Randabstand (Spalten) 2)	$C_{cr,sp}$	[mm]	90	120	140	170	240	275	

UPAT Ankerbolzen MAX, MAX A4, MAX C	
Leistungen: Charakteristische Werte für Zugtragfähigkeit für Standardverankerungstiefe (Bemessungsmethode A, gemäß ETAG 001, Anhang C oder CEN/TS 1992-4:2009)	Anhang C 1

Versagensart Herausziehen nicht maßgebend.
 Zwischenwerte für s_{cr,sp} und c_{rc,sp} dürfen zwischen den Betonbauteildicken h_{min,2} und h_{min,1} linear interpoliert werden.
 Sofern andere nationale Regelungen fehlen.

Tabelle C2: Charakteristische Werte für Zugtragfähigkeit für **reduzierte Verankerungstiefe** unter statischer und quasi-statischer Belastung (Bemessungsmethode A, gemäß ETAG 001, **Anhang C** oder **CEN/TS 1992-4:2009**)

Dübaltırı / Cräßa			MAX, MAX A4, MAX C				
Dübeltyp / Größe	M10	M12	M16				
Stahlversagen für reduzierte Vera	nkerungsti	efe					
Charakteristischer Widerstand	$N_{Rk,s}$	[kN]	27,0	41,5	66,0		
Teilsicherheitsbeiwert	γ _{Ms} 2)	[-]		1,5			
Herausziehen für reduzierte Verar	nkerungstie	efe					
Charakteristische Tragfähigkeit in gerissenem Beton C20/25	$N_{Rk,p}$	[kN]		- ¹⁾			
Charakteristische Tragfähigkeit in ungerissenem Beton C20/25	$N_{Rk,p}$	[kN]		- 1)			
Erhöhungsfaktoren für N _{Rk,p} für		C25/30		1,10			
		C30/37	1,22				
		C35/45	1,34				
gerissenen und ungerissenen Beton	Ψс	C40/50		1,41			
		C45/55		1,48			
		C50/60		1,55			
Montagesicherheitsbeiwert	γ2 = γinst	[-]		1,0			
Betonausbruch und Spalten für re	eduzierte V	erankerun	gstiefe				
Effektive Verankerungstiefe	h_{ef}	[mm]	40	50	65		
Faktor für ungerissenen Beton	k_{ucr}	[-]		10,1			
Faktor für gerissenen Beton	k_{cr}	[-]		7,2			
Mindestdicke des Betonbauteils	h _{min, 3}	[mm]	80	100	140		
Charakteristischer Achsabstand	S _{cr,N}	[mm]		3 h _{ef}			
Charakteristischer Randabstand	C _{cr,N}	[mm]		1,5 h _{ef}			
Achsabstand (Spalten)	S _{cr,sp}	[mm]	160	200	260		
Randabstand (Spalten)	$C_{cr,sp}$	[mm]	80	100	130		

Versagensart Herausziehen nicht maßgebend.
 Sofern andere nationale Regelungen fehlen.

UPAT Ankerbolzen MAX, MAX A4, MAX C	
Leistungen: Charakteristische Werte für Zugtragfähigkeit für reduzierte Verankerungstiefe (Bemessungsmethode A, gemäß ETAG 001, Anhang C oder CEN/TS 1992-4:2009)	Anhang C 2

Tabelle C3: Charakteristische Werte bei Querbeanspruchung, gerissener und ungerissener Beton, bei Standardverankerungstiefe und reduzierte Verankerungstiefe unter statischer und quasi-statischer Belastung (Bemessungsmethode A, gemäß ETAG 001, Anhang C oder CEN/TS 1992-4:2009)

Dübeltyp / Größe			MAX, MAX A4, MAX C					
Dubeltyp / Groise			М8	M10	M12	M16	M20	M24
Stahlversagen ohne Hebelarm für Sta	ndardvera	ınkerung	gstiefe ι	und red	uzierte '	Veranke	rungsti	efe
Charakteristischer Widerstand	$V_{Rk,s}$	[kN]	12,0	20,0	29,5	55,0	70,0	86,0
Teilsicherheitsbeiwert	1) γMs	[-]			1,	25		
Duktilitätsfaktor	k ₂	[-]			1	,0		
St	andardve	rankeru	ngstiefe)				
Stahlversagen mit Hebelarm								
Charakteristisches Biegemoment	${\sf M}^0_{\sf Rk,s}$	[Nm]	26	52	92	233	487	769
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]			1,	25		
Duktilitätsfaktor	k ₂	[-]			1	,0		
Betonausbruch auf der lastabgewand	ten Seite							
Faktor k gemäß ETAG 001, Anhang C bzw. k₃ gemäß CEN/TS 1992-4	k ₍₃₎	[-]	2	,2	2,4		2,8	
Betonkantenbruch								
Effektive Dübellänge bei Querlast	I f	[mm]	45	60	70	85	100	125
Dübeldurchmesser	d_{nom}	[mm]	8	10	12	16	20	24
Montagesicherheitsbeiwert	γ ₂ = γinst				1	,0		
Red	duzierte V	eranker	ungstie	fe				
Stahlversagen mit Hebelarm								
Charakteristisches Biegemoment	$M^0_{Rk,s}$	[Nm]	-	40	89	171	-	-
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]			1,	25		
Duktilitätsfaktor	k ₂	[-]			1	,0		
Betonausbruch auf der lastabgewand	ten Seite							
Faktor k gemäß ETAG 001, Anhang C bzw. k₃ gemäß CEN/TS 1992-4	k ₍₃₎	[-]	- 2,0 2,3				-	
Betonkantenbruch								
Effektive Dübellänge bei Querlast	I_f	[mm]	-	40	50	65	-	-
Dübeldurchmesser	d _{nom}	[mm]	-	10	12	16	-	_

¹⁾ Sofern andere nationale Regelungen fehlen.

UPAT Ankerbolzen MAX, MAX A4, MAX C		
Leistungen: Charakteristische Werte für Quertragfähigkeit (Bemessungsmethode A, gemäß ETAG 001, Anhang C oder CEN/TS 1992-4:2009)	Anhang C 3	

Tabelle C4: Charakteristische Werte für Zugtragfähigkeit unter Brandbeanspruchung in gerissenem und ungerissenem Beton für Standardverankerungstiefe und reduzierte Verankerungstiefe (Bemessung gemäß TR 020 und ETAG 001, Anhang C oder CEN/TS 1992-4: 2009, Anhang D)

3	1	R30	- 3	R60				
Dübeltyp / Größe	Feuerwi		30 Minuten	Feuerwi	Feuerwiderstand 60 Minuten			
MAX, MAX A4, MAX C	N _{Rk,s,fi,30} [kN]	N _{Rk,p,fi,30} [kN]	N ⁰ _{Rk,c,fi,30} [kN]	N _{Rk,s,fi,60} [kN]	N _{Rk,p,fi,60} [kN]	N ⁰ _{Rk,c,fi,60} [kN]		
Standardverankerungstiefe								
M8	1,4	1,3	2,4	1,2	1,3	2,4		
M10	2,8	2,3	5,0	2,3	2,3	5,0		
M12	5,0	4,0	7,4	4,1	4,0	7,4		
M16	9,4	7,1	12,0	7,7	7,1	12,0		
M20	14,7	9,0	18,0	12,0	9,0	18,0		
M24	21,1	12,6	31,4	17,3	12,6	31,4		
Reduzierte Verankerungstiefe								
M10	2,8	2,3	1,8	2,3	2,3	1,8		
M12	5,0	3,2	3,2	4,1	3,2	3,2		
M16	9,4	4,7	6,1	7,7	4,7	6,1		
	Feuerwi	R90 derstand 9	00 Minuten	R120 Feuerwiderstand 120 Minuter				
	N _{Rk,s,fi,90} [kN]	N _{Rk,p,fi,90} [kN]	N ⁰ _{Rk,c,fi,90} [kN]	N _{Rk,s,fi,120} [kN]	N _{Rk,p,fi,120} [kN]	N ⁰ _{Rk,c,fi,120} [kN]		
Standardverankerungstiefe	•	•						
M8	0,9	1,3	2,4	0,8	1,0	1,9		
M10	1,9	2,3	5,0	1,6	1,8	4,0		
M12	3,2	4,0	7,4	2,8	3,2	5,9		
M16	6,0	7,1	12,0	5,2	5,6	9,6		
M20	9,4	9,0	18,0	8,1	7,2	14,4		
M24	13,5	12,6	31,4	11,6	10,1	25,1		
M24 Reduzierte Verankerungstiefe	13,5	12,6	31,4	11,6	10,1	25,1		
	13,5	12,6 2,3	31,4 1,8	11,6	10,1	25,1 1,4		
Reduzierte Verankerungstiefe				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		

Sofern andere nationale Regelungen fehlen, wird unter Brandbeanspruchung ein Teilsicherheitsbeiwert von $\gamma_{M,fi}$ = 1,0 empfohlen.

UPAT Ankerbolzen MAX, MAX A4, MAX C

Leistungen:

Charakteristische Werte für Zugtragfähigkeit unter Brandbeanspruchung (Bemessung gemäß TR 020 und ETAG 001, Anhang C oder CEN/TS 1992-4:2009, Anhang D)

Anhang C 4

Tabelle C5: Charakteristische Werte für Quertragfähigkeit unter Brandbeanspruchung in gerissenem und ungerissenem Beton für Standardverankerungstiefe und reduzierte Verankerungstiefe (Bemessung gemäß TR 020 und ETAG 001, Anhang C oder CENT/TS 1992-4:2009, Anhang D)

Dübeltyp / Größe	Feuerwid	R30 erstand 30 Minu	Feuerwide	R60 Feuerwiderstand 60 Minuten					
MAX, MAX A4, MAX C	V _{Rk,s,fi,30} [kN]	M ⁰ _{Rk,s,fi,30} [Nm]	k=k ₃	V _{Rk,s,fi,60} [kN]	M ⁰ _{Rk,s,fi,60} [Nm]	k ₃			
Standardverankerungstief	е								
M8	1,8	1,4	2,2	1,6	1,2	2,2			
M10	3,6	3,6	2,2	2,9	3,0	2,2			
M12	6,3	7,8	2,4	4,9	6,4	2,4			
M16	11,7	19,9	2,8	9,1	16,3	2,8			
M20	18,2	39,0	2,8	14,2	31,8	2,8			
M24	26,3	67,3	2,8	20,5	55,0	2,8			
Reduzierte Verankerungst	iefe								
M10	3,6	3,6	2,0	2,9	3,0	2,0			
M12	6,3	7,8	2,3	4,9	6,4	2,3			
M16	11,7	20,0	2,3	9,1	16,3	2,3			
	Feuerwid	R90 erstand 90 Minu	ıten	Feuerwide	R120 rstand 120 Mir	nuten			
	Feuerwid V _{Rk,s,fi,90} [kN]		ıten k ₃	Feuerwide V _{Rk,s,fi,120} [kN]		nuten k ₃			
Standardverankerungstief	V _{Rk,s,fi,90} [kN]	erstand 90 Minu M ⁰ _{Rk,s,fi,90}		$V_{Rk,s,fi,120}$	rstand 120 Mir M ⁰ _{Rk,s,fi,120}				
Standardverankerungstief	V _{Rk,s,fi,90} [kN]	erstand 90 Minu M ⁰ _{Rk,s,fi,90}		$V_{Rk,s,fi,120}$	rstand 120 Mir M ⁰ _{Rk,s,fi,120}				
	V _{Rk,s,fi,90} [kN]	erstand 90 Minu M ⁰ _{Rk,s,fi,90} [Nm]	k ₃	V _{Rk,s,fi,120} [kN]	rstand 120 Mir M ⁰ _{Rk,s,fi,120} [Nm]	k ₃			
M8	V _{Rk,s,fi,90} [kN] 9	erstand 90 Minu M ⁰ _{Rk,s,fi,90} [Nm]	k ₃	V _{Rk,s,fi,120} [kN]	rstand 120 Mir M ⁰ _{Rk,s,fi,120} [Nm] 0,8	k ₃			
M8 M10	V _{Rk,s,fi,90} [kN] e 1,3 2,2	erstand 90 Minu M ⁰ _{Rk,s,fi,90} [Nm] 1,0 2,4	2,2 2,2	V _{Rk,s,fi,120} [kN] 1,2 1,9	rstand 120 Mir M ⁰ _{Rk,s,fi,120} [Nm] 0,8 2,1	2,2 2,2			
M8 M10 M12	V _{Rk,s,fi,90} [kN] 9 1,3 2,2 3,5	erstand 90 Minu M ⁰ _{Rk,s,fi,90} [Nm] 1,0 2,4 5,0	2,2 2,2 2,4 2,8 2,8	V _{Rk,s,fi,120} [kN] 1,2 1,9 2,8	rstand 120 Mir M ⁰ _{Rk,s,fi,120} [Nm] 0,8 2,1 4,3	2,2 2,2 2,4 2,8 2,8			
M8 M10 M12 M16	V _{Rk,s,fi,90} [kN] e 1,3 2,2 3,5 6,6	erstand 90 Minu M ⁰ _{Rk,s,fi,90} [Nm] 1,0 2,4 5,0 12,6	2,2 2,2 2,4 2,8	V _{Rk,s,fi,120} [kN] 1,2 1,9 2,8 5,3	0,8 2,1 4,3 11,0	2,2 2,2 2,4 2,8			
M8 M10 M12 M16 M20	V _{Rk,s,fi,90} [kN] e 1,3 2,2 3,5 6,6 10,3 14,8	erstand 90 Minu M ⁰ _{Rk,s,fi,90} [Nm] 1,0 2,4 5,0 12,6 24,6	2,2 2,2 2,4 2,8 2,8	V _{Rk,s,fi,120} [kN] 1,2 1,9 2,8 5,3 8,3	0,8 2,1 4,3 11,0 21,4	2,2 2,2 2,4 2,8 2,8			
M8 M10 M12 M16 M20 M24	V _{Rk,s,fi,90} [kN] e 1,3 2,2 3,5 6,6 10,3 14,8	erstand 90 Minu M ⁰ _{Rk,s,fi,90} [Nm] 1,0 2,4 5,0 12,6 24,6	2,2 2,2 2,4 2,8 2,8	V _{Rk,s,fi,120} [kN] 1,2 1,9 2,8 5,3 8,3	0,8 2,1 4,3 11,0 21,4	2,2 2,2 2,4 2,8 2,8			
M8 M10 M12 M16 M20 M24 Reduzierte Verankerungst	V _{Rk,s,fi,90} [kN] e 1,3 2,2 3,5 6,6 10,3 14,8	erstand 90 Minu M ⁰ _{Rk,s,fi,90} [Nm] 1,0 2,4 5,0 12,6 24,6 42,6	2,2 2,2 2,4 2,8 2,8 2,8	V _{Rk,s,fi,120} [kN] 1,2 1,9 2,8 5,3 8,3 11,9	0,8 2,1 4,3 11,0 21,4 37,0	2,2 2,2 2,4 2,8 2,8 2,8			

Betonausbruch auf der lastabgewandten Seite: Nach Gleichung (5.6) ETAG 001, Anhang C, 5.2.3.3. Die $k_{(3)}$ -Faktoren der Tabelle C3 und die relevanten Werte für $N^0_{Rk,c,fi}$ der Tabelle C4 sind anzuwenden.

Betonkantenbruch: Der charakteristische Widerstand $V^0_{Rk,c,fi}$ in Beton C20/25 bis C50/60 ist zu ermitteln mit: $V^0_{Rk,c,fi} = 0.25 \times V^0_{Rk,c}$ (R30, R60, R90), $V^0_{Rk,c,fi} = 0.20 \times V^0_{Rk,c}$ (R120) mit $V^0_{Rk,c}$ als Ausgangswert des charakteristischen Widerstandes im gerissenen Beton C20/25 unter Normaltemperatur entsprechend ETAG 001, Annex C, 5.2.3.4.

Sofern andere nationale Regelungen fehlen, wird der Teilsicherheitsbeiwert der Tragfähigkeit unter Brandbeanspruchung $\gamma_{M, fi}$ = 1,0 empfohlen.

UPAT Ankerbolzen MAX, MAX A4, MAX C

Leistungen:
Charakteristische Werte für Quertragfähigkeit unter Brandbeanspruchung
(Bemessung gemäß TR 020 und ETAG 001, Anhang C oder CEN/TS 1992-4:2009, Anhang D)

Tabelle C6: Zulässige Ankergrößen für seismische Einwirkungen, Leistungskategorie C1, Standardverankerungstiefe und reduzierte Verankerungstiefe

Dübeltyp / Größe			MA	X, MAX	A4, MA	(C	
Dubelityp / Groise		M8	M10	M12	M16	M20	M24
Effektive Standardverankerungstiefe	$h_{\text{ef,sta}} \geq \text{[mm]}$	45	60	70	85	100	125
Pofostigungetoildioko	$t_{fix,min} = [mm]$	0	0	0	0	0	0
Befestigungsteildicke	$t_{fix,max} = [mm]$	100	100	120	160	250	300
Dühallänga	L _{min} = [mm]	64,5	84,5	99	122	141	174
Dübellänge	L _{max} = [mm]	167	186	221	284,5	394	477
Reduzierte effektive Verankerungstiefe	$h_{\text{ef,red}} \geq [mm]$	-	40	50	65	-	-
Defection proteildisks	$t_{fix,min} = [mm]$	-	0	0	0	-	-
Befestigungsteildicke	t _{fix,max} = [mm]	-	120	140	180	-	-
Düballanga	L _{min} = [mm]	-	64,5	79	102	-	-
Dübellänge	L _{max} = [mm]	-	186	221	284,5	-	-

Tabelle C7: Zulässige Ankergrößen für seismische Bemessung, Leistungskategorie C2, Standardverankerungstiefe und reduzierte Verankerungstiefe

Dühaltun / Cräßa			MAX, MAX A4, MAX C 1)								
Dübeltyp / Größe		M8	M10	M12	M16	M20	M24				
Effektive Standardverankerungstiefe	$h_{ef,sta} \ge [mm]$	-	60	70	85	100	-				
Befestigungsteildicke -	$t_{fix,min} = [mm]$	-	0	0	0	0	-				
	t _{fix,max} = [mm]	-	100	120	160	250	-				
Düballanga	L _{min} = [mm]	-	84,5	99	122	141	-				
bübellänge -	L _{max} = [mm]	-	186	221	284,5	394	-				
Reduzierte effektive Verankerungstiefe	$h_{\text{ef,red}} \geq [mm]$	-	40	50	65	-	-				
Defectious actoildisks	$t_{fix,min} = [mm]$	-	0	0	0	-	-				
Befestigungsteildicke	t _{fix,max} = [mm]	-	120	140	180	-	-				
Düballanga	L _{min} = [mm]	-	64,5	79	102	-	-				
Dübellänge	L _{max} = [mm]	-	186	221	284,5	-	-				

MAX C: Gültig nur für umgeformte Ausführung (siehe A1)

UPAT Ankerbolzen MAX, MAX A4, MAX C		
Leistungen: Zulässige Ankergrößen für Seismische Einwirkungen	Anhang C 6	

Tabelle C8: Charakteristische Werte für Zug- und Quertragfähigkeit für Standard- und reduzierte Verankerungstiefe unter seismischer Einwirkung (Bemessung gemäß TR 045: Leistungskategorie C1)

Dübeltyp / Größe			MAX, MAX A4, MAX C				•	
			М8	M10	M12	M16	M20	M24
Stahlversagen								
Charakteristische _	h _{ef,sta}	16		27.0	44.0	66.0	111,0	150,0
Zugtragfähigkeit C1	h _{ef,red.}	$$ $N_{Rk,s,C1}$ [kN]	-	27,0	41,0	66,0	-	-
Teilsicherheitsbeiwert	γ _{Ms,C1} 1) [-]	1,5						
Herausziehen								
Charakteristische	h _{ef,sta}		4,6				36,0	50,3
Zugtragfähigkeit in gerissenem – Beton C1	h _{ef,red.}	$$ $N_{Rk,p,C1}$ [kN]	-	8,0 16,	16,0	28,2	-	-
Montagesicherheitsbeiwert		γ _{2,C1} [-]				1,0		
Stahlversagen ohne Hebelarm								
Charakteristische	h _{ef,sta}) / [I-NI]	11,0	47.0	07.0	47.0	56,0	69,0
Quertragfähigkeit C1	h _{ef,red.}	— V _{Rk,s,C1} [kN]		17,0	,0 27,0	47,0	-	-
Teilsicherheitsbeiwert		γ _{Ms,C1} 1) [-]	1,25					

Tabelle C9: Charakteristische Werte für Zug- und Quertragfähigkeit für Standard- und reduzierte Verankerungstiefe unter seismischer Einwirkung (Bemessung gemäß TR 045: Leistungskategorie C2)

Dübeltyp / Größe				MAX, MAX A4, MAX C ²⁾						
			М8	M10	M12	M16	M20	M24		
Stahlversagen										
Charakteristische _ Zugtragfähigkeit C2	h _{ef,sta}	─ N _{Rk,s,C2} [kN]	-	27,0	41,0	66,0	111,0	-		
Teilsicherheitsbeiwert		γ _{Ms,C2} 1) [-]				1,5	•			
Herausziehen										
Charakteristische Zugtragfähigkeit in gerissenem – Beton C2	h _{ef,sta}	— N _{Rk,p,C2} [kN]	-	5,1 2,7	7,4 4,4	21,5 16,4	30,7	-		
Montagesicherheitsbeiwert		γ _{2,C2} [-]			<u>, </u>	1,0				
Stahlversagen ohne Hebelarm										
Charakteristische Quertragfähigkeit C2	h _{ef,sta}	— V _{Rk,s,C2} [kN]	-	10,0 7,0	17,4 12,7	27,5 22,0	39,9	-		
Teilsicherheitsbeiwert		γ _{Ms,C2} 1) [-]			1	,25				

Sofern andere nationale Regelungen fehlen.

²⁾ MAX C: Gültig nur für umgeformte Ausführung (siehe A1)

UPAT Ankerbolzen MAX, MAX A4, MAX C	
Leistungen: Charakteristische Werte für Zug- und Quertragfähigkeit unter seismischer Einwirkung	Anhang C 7

Tabelle C10: Verschiebungen aufgrund von Zuglasten für Standardverankerungstiefe und reduzierte Verankerungstiefe (Bemessungsmethode A, gemäß ETAG 001, Anhang C oder CENT/TS 1992-4:2009)

Dübaltus / Cräßa				MA	X, MAX	A4, MA	хс	
Dübeltyp / Größe			M8	M10	M12	M16	M20	M24
Werte für Standardverankerungstiefe								
Zuglast in gerissenem Beton	N	[kN]	2,3	4,2	7,5	13,2	16,4	22,9
Varaahiahuna	δ_{N0}	[mm]	0,5	0,5	0,7	1,0	1,2	1,2
Verschiebung	$\delta_{N\infty}$	[mm]		1	,2		1,4	1,5
Zuglast in ungerissenem Beton	N	[kN]	4,2	7,5	11,7	18,7	23,3	32,5
Varachiahung	δ_{N0}	[mm]	0,3	0,3	0,5	0,7	1,2	1,2
Verschiebung	$\delta_{N\infty}$	[mm]		1	,2		1,4	1,5
Werte für reduzierte Verankerungstiefe								
Zuglast in gerissenem Beton	N	[kN]	-	4,2	6,0	9,0	-	-
Verschiebung	δ_{N0}	[mm]	-	0,5	0,7	1,0	-	-
verschiebung	$\delta_{N\infty}$	[mm]		1	,2		-	-
Zuglast in ungerissenem Beton	N	[kN]	-	5,7	8,5	12,6	-	-
	δ_{N0}	[mm]	-	0,3	0,5	0,7	-	-
Verschiebung	$\delta_{N\infty}$	[mm]		1	,2		-	-

Tabelle C11: Verschiebungen aufgrund von Querlasten für Standardverankerungstiefe und reduzierte Verankerungstiefe (Bemessungsmethode A, gemäß ETAG 001, Anhang C oder CENT/TS 1992-4:2009)

Dübeltyp / Größe						MAX, MAX A4, MAX C				
		M8	M10	M12	M16	M20	M24			
Querlast in gerissenem und ungerissenem Beton	V	[kN]	6,9	11,4	16,9	31,4	39,4	48,5		
Verschiebung	δ_{V0}	[mm	2,4	4,2	4,5	3,0	3,6	3,6		
Verschiebung	$\delta_{V^{\infty}}$	[mm	3,6	6,3	6,8	4,5	5,4	5,4		

UPAT Ankerbolzen MAX, MAX A4, MAX C	
Leistungen: Verschiebungen aufgrund von Zug- und Querlasten	Anhang C 8

Tabelle C12: Verschiebungen aufgrund von Zuglasten für Standardverankerungstiefe und reduzierte Verankerungstiefe (Bemessung gemäß TR 045: Leistungskategorie C2)

Dübeltyp / Größe			MAX, MAX A4, MAX C								
			M8	M10	M12	M16	M20	M24			
Werte für Standardverankerungstiefe											
Verschiebung DLS	$\delta_{N,C2(DLS)}$	[mm]	-	2,7	4,4	4,4	5,6	-			
Verschiebung ULS	$\delta_{N,C2(ULS)}$	[mm]	-	11,5	13,0	12,3	14,4	-			
Werte für reduzierte Verankerungstiefe											
Verschiebung DLS	$\delta_{N,C2\;(DLS)}$	[mm]	-	2,7	4,4	4,4	-	•			
Verschiebung ULS	$\delta_{N,C2\;(ULS)}$	[mm]	-	11,5	13,0	12,3	1	ı			

Tabelle C13: Verschiebungen aufgrund von Querlasten für Standardverankerungstiefe und reduzierte Verankerungstiefe (Bemessung gemäß TR 045: Leistungskategorie C2)

Dübeltyp / Größe		MAX, MAX A4, MAX C								
		M8	M10	M12	M16	M20	M24			
Werte für Standardverankerungstiefe										
Verschiebung DLS	$\delta_{ m V,C2~(DLS)}$	[mm]	-	4,1	4,4	4,3	4,8	-		
Verschiebung ULS	$\delta_{ m V,C2~(ULS)}$	[mm]	-	6,2	7,8	8,1	11,2	-		
Werte für reduzierte Verankerungstiefe										
Verschiebung DLS	$\delta_{ m V,C2~(DLS)}$	[mm]	-	3,6	4,7	5,5	-	-		
Verschiebung ULS	$\delta_{ m V,C2~(ULS)}$	[mm]	-	5,0	7,5	10,1	-	-		

UPAT Ankerbolzen MAX, MAX A4, MAX C

Leistungen:
Verschiebungen aufgrund von Zug- und Querlasten unter seismischer Einwirkung

Anhang C 9